viral surface protein
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Juan Fontana ◽  
Doina Atanasiu ◽  
Wan Ting Saw ◽  
John R. Gallagher ◽  
Reagan G. Cox ◽  
...  

ABSTRACTAll enveloped viruses, including herpesviruses, must fuse their envelope with the host membrane to deliver their genomes into target cells, making this essential step subject to interference by antibodies and drugs. Viral fusion is mediated by a viral surface protein that transits from an initial prefusion conformation to a final postfusion conformation. Strikingly, the prefusion conformation of the herpesvirus fusion protein, gB, is poorly understood. Herpes simplex virus (HSV), a model system for herpesviruses, causes diseases ranging from mild skin lesions to serious encephalitis and neonatal infections. Using cryo-electron tomography and subtomogram averaging, we have characterized the structure of the prefusion conformation and fusion intermediates of HSV-1 gB. To this end, we have set up a system that generates microvesicles displaying full-length gB on their envelope. We confirmed proper folding of gB by nondenaturing electrophoresis-Western blotting with a panel of monoclonal antibodies (MAbs) covering all gB domains. To elucidate the arrangement of gB domains, we labeled them by using (i) mutagenesis to insert fluorescent proteins at specific positions, (ii) coexpression of gB with Fabs for a neutralizing MAb with known binding sites, and (iii) incubation of gB with an antibody directed against the fusion loops. Our results show that gB starts in a compact prefusion conformation with the fusion loops pointing toward the viral membrane and suggest, for the first time, a model for gB’s conformational rearrangements during fusion. These experiments further illustrate how neutralizing antibodies can interfere with the essential gB structural transitions that mediate viral entry and therefore infectivity.IMPORTANCEThe herpesvirus family includes herpes simplex virus (HSV) and other human viruses that cause lifelong infections and a variety of diseases, like skin lesions, encephalitis, and cancers. As enveloped viruses, herpesviruses must fuse their envelope with the host membrane to start an infection. This process is mediated by a viral surface protein that transitions from an initial conformation (prefusion) to a final, more stable, conformation (postfusion). However, the prefusion conformation of the herpesvirus fusion protein (gB) is poorly understood. To elucidate the structure of the prefusion conformation of HSV type 1 gB, we have employed cryo-electron microscopy to study gB molecules expressed on the surface of vesicles. Using different approaches to label gB’s domains allowed us to model the structures of the prefusion and intermediate conformations of gB. Overall, our findings enhance our understanding of HSV fusion and lay the groundwork for the development of new ways to prevent and block HSV infection.


2016 ◽  
Vol 113 (23) ◽  
pp. 6403-6408 ◽  
Author(s):  
Jeffrey E. Dick ◽  
Adam T. Hilterbrand ◽  
Lauren M. Strawsine ◽  
Jason W. Upton ◽  
Allen J. Bard

We report the specific collision of a single murine cytomegalovirus (MCMV) on a platinum ultramicroelectrode (UME, radius of 1 μm). Antibody directed against the viral surface protein glycoprotein B functionalized with glucose oxidase (GOx) allowed for specific detection of the virus in solution and a biological sample (urine). The oxidation of ferrocene methanol to ferrocenium methanol was carried out at the electrode surface, and the ferrocenium methanol acted as the cosubstrate to GOx to catalyze the oxidation of glucose to gluconolactone. In the presence of glucose, the incident collision of a GOx-covered virus onto the UME while ferrocene methanol was being oxidized produced stepwise increases in current as observed by amperometry. These current increases were observed due to the feedback loop of ferrocene methanol to the surface of the electrode after GOx reduces ferrocenium methanol back to ferrocene. Negative controls (i) without glucose, (ii) with an irrelevant virus (murine gammaherpesvirus 68), and (iii) without either virus do not display these current increases. Stepwise current decreases were observed for the prior two negative controls and no discrete events were observed for the latter. We further apply this method to the detection of MCMV in urine of infected mice. The method provides for a selective, rapid, and sensitive detection technique based on electrochemical collisions.


2015 ◽  
Vol 370 (1661) ◽  
pp. 20140034 ◽  
Author(s):  
Elspeth F. Garman

Infection by the influenza virus depends firstly on cell adhesion via the sialic-acid-binding viral surface protein, haemagglutinin, and secondly on the successful escape of progeny viruses from the host cell to enable the virus to spread to other cells. To achieve the latter, influenza uses another glycoprotein, the enzyme neuraminidase (NA), to cleave the sialic acid receptors from the surface of the original host cell. This paper traces the development of anti-influenza drugs, from the initial suggestion by MacFarlane Burnet in 1948 that an effective ‘competitive poison’ of the virus' NA might be useful in controlling infection by the virus, through to the determination of the structure of NA by X-ray crystallography and the realization of Burnet's idea with the design of NA inhibitors. A focus is the contribution of the late William Graeme Laver, FRS, to this research.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
M. H. Verheije ◽  
P. J. M. Rottier

Oncolytic virus therapy is based on the ability of viruses to effectively infect and kill tumor cells without destroying the normal tissues. While some viruses seem to have a natural preference for tumor cells, most viruses require the modification of their tropism to specifically enter and replicate in such cells. This review aims to describe the transductional targeting strategies currently employed to specifically redirect viruses towards surface receptors on tumor cells. Three major strategies can be distinguished; they involve (i) the incorporation of new targeting specificity into a viral surface protein, (ii) the incorporation of a scaffold into a viral surface protein to allow the attachment of targeting moieties, and (iii) the use of bispecific adapters to mediate targeting of a virus to a specified moiety on a tumor cell. Of each strategy key features, advantages and limitations are discussed and examples are given. Because of their potential to cause sustained, multiround infection—a desirable characteristic for eradicating tumors—particular attention is given to viruses engineered to become self-targeted by the genomic expression of a bispecific adapter protein.


2004 ◽  
Vol 78 (20) ◽  
pp. 10839-10847 ◽  
Author(s):  
Selene Zárate ◽  
Pedro Romero ◽  
Rafaela Espinosa ◽  
Carlos F. Arias ◽  
Susana López

ABSTRACT Rotavirus entry is a complex multistep process that depends on the trypsin cleavage of the virus spike protein VP4 into polypeptides VP5 and VP8 and on the interaction of these polypeptides and of VP7, the second viral surface protein, with several cell surface molecules, including integrin αvβ3. We characterized the effect of the trypsin cleavage of VP4 on the binding to MA104 cells of the sialic acid-dependent virus strain RRV and its sialic acid-independent variant, nar3. We found that, although the trypsin treatment did not affect the attachment of these viruses to the cell surface, their binding was qualitatively different. In contrast to the trypsin-treated viruses, which initially bound to the cell surface through VP4, the non-trypsin-treated variant nar3 bound to the cell through VP7. Amino acid sequence comparison of the surface proteins of rotavirus and hantavirus, both of which interact with integrin αvβ3 in an RGD-independent manner, identified a region shared by rotavirus VP7 and hantavirus G1G2 protein in which six of nine amino acids are identical. This region, which is highly conserved among the VP7 proteins of different rotavirus strains, mediates the binding of rotaviruses to integrin αvβ3 and probably represents a novel binding motif for this integrin.


2002 ◽  
Vol 76 (4) ◽  
pp. 1986-1990 ◽  
Author(s):  
Stephan Urban ◽  
Philippe Gripon

ABSTRACT We have used the duck hepatitis B virus (DHBV) model to study the interference with infection by a myristoylated peptide representing an N-terminal pre-S subdomain of the large viral envelope protein. Although lacking the essential part of the carboxypeptidase D (formerly called gp180) receptor binding site, the peptide binds hepatocytes and subsequently blocks DHBV infection. Since its activity requires an amino acid sequence involved in host discrimination between DHBV and the related heron HBV (T. Ishikawa and D. Ganem, Proc. Natl. Acad. Sci. USA 92:6259-6263, 1995), we suggest that it is related to the postulated host-discriminating cofactor of infection.


Sign in / Sign up

Export Citation Format

Share Document