enveloped viruses
Recently Published Documents





2022 ◽  
Kerri L Miazgowicz ◽  
Judith Mary Reyes Ballista ◽  
Marissa D Acciani ◽  
Ariana R Jimenez ◽  
Ryan S Belloli ◽  

Chikungunya virus (CHIKV), an alphavirus of the Togaviridae family, is the causative agent of the human disease chikungunya fever (CHIKF), which is characterized by debilitating acute and chronic arthralgia. No licensed vaccines or antivirals exist for CHIKV. Preventing the attachment of viral particles to host cells is an attractive intervention strategy. Viral entry of enveloped viruses from diverse families including Filoviridae and Flaviviridae is mediated or enhanced by phosphatidylserine receptors (PSRs). PSRs facilitate the attachment of enveloped viruses to cells by binding to exposed phosphatidylserine (PS) in the viral lipid membrane - a process termed viral apoptotic mimicry. To investigate the role of viral apoptotic mimicry during CHIKV infection, we produced viral particles with discrete amounts of exposed PS on the virion envelope by exploiting the cellular distribution of phospholipids at the plasma membrane. We found that CHIKV particles containing high outer leaflet PS (produced in cells lacking flippase activity) were more infectious in Vero cells than particles containing low levels of outer leaflet PS (produced in cells lacking scramblase activity). However, the same viral particles were similarly infectious in NIH3T3 and HAP1 cells, suggesting PS levels can influence infectivity only in cells with high levels of PSRs. Interestingly, PS-dependent CHIKV entry was observed in mosquito Aag2 cells, but not C6/36 cells. These data demonstrate that CHIKV entry via viral apoptotic mimicry is cell-type dependent. Furthermore, viral apoptotic mimicry has a mechanistic basis to influence viral dynamics in vivo in both the human and mosquito host.

2022 ◽  
Vol 12 ◽  
Jacqueline Graff Reis ◽  
Rafael Dorighello Cadamuro ◽  
Ariadne Cristiane Cabral ◽  
Izabella Thaís da Silva ◽  
David Rodríguez-Lázaro ◽  

The pharmaceutical industry is currently trying to develop new bioactive compounds to inactivate both enveloped and non-enveloped viruses for therapeutic purposes. Consequently, microalgal and macroalgal bioactive compounds are being explored by pharmaceutical, as well as biotechnology and food industries. In this review, we show how compounds produced by algae include important candidates for viral control applications. We discuss their mechanisms of action and activity against enveloped and non-enveloped viruses, including those causing infections by enteric, parenteral, and respiratory routes. Indeed, algal products have potential in human and animal medicine.

mBio ◽  
2022 ◽  
Seung Bum Park ◽  
Parker Irvin ◽  
Zongyi Hu ◽  
Mohsin Khan ◽  
Xin Hu ◽  

SARS-CoV-2 is an enveloped virus that requires membrane fusion for entry into host cells. Since the fusion process is relatively conserved among enveloped viruses, we tested our HCV fusion inhibitors, dichlorcyclizine and fluoxazolevir, against SARS-CoV-2.

2022 ◽  
Nicolas Moreno ◽  
Daniela Moreno-Chaparro ◽  
Florencio Balboa Usabiaga ◽  
Marco Ellero

Many viruses, such as SARS-CoV-2 or Influenza, possess spike-decorated envelopes. Depending on the virus type, a large variability is present in spikes number, morphology and reactivity, which remains generally unexplained. Since viruses' transmissibility depend on features beyond their genetic sequence, new tools are required to discern the effects of spikes functionality, interaction, and morphology. Here, we postulate the relevance of hydrodynamic interactions in the viral infectivity of enveloped viruses and propose micro-rheological characterization as a platform for viruses differentiation. To understand how the spikes affect virion mobility and infectivity, we investigate the diffusivity of spike-decorate structures using mesoscopic-hydrodynamic simulations. Furthermore, we explored the interplay between affinity and passive viral transport. Our results revealed that the diffusional mechanism of SARS-CoV-2 is strongly influenced by the size and distribution of its spikes. We propose and validate a universal mechanism to explain the link between optimal virion structure and maximal infectivity for many virus families.

2022 ◽  
Hiroto Furukawa ◽  
Hiroshi Inaba ◽  
Yoshihiro Sasaki ◽  
Kazunari Akiyoshi ◽  
Kazunori Matsuura

Natural enveloped viruses, in which nucleocapsids are covered with lipid bilayers, contain membrane proteins on the outer surface that are involved in diverse functions, such as adhesion and infection of...

Pathogens ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 39
Daniel Perez-Zsolt ◽  
Dàlia Raïch-Regué ◽  
Jordana Muñoz-Basagoiti ◽  
Carmen Aguilar-Gurrieri ◽  
Bonaventura Clotet ◽  

HIV-1 cell-to-cell transmission is key for an effective viral replication that evades immunity. This highly infectious mechanism is orchestrated by different cellular targets that utilize a wide variety of processes to efficiently transfer HIV-1 particles. Dendritic cells (DCs) are the most potent antigen presenting cells that initiate antiviral immune responses, but are also the cells with highest capacity to transfer HIV-1. This mechanism, known as trans-infection, relies on the capacity of DCs to capture HIV-1 particles via lectin receptors such as the sialic acid-binding I-type lectin Siglec-1/CD169. The discovery of the molecular interaction of Siglec-1 with sialylated lipids exposed on HIV-1 membranes has enlightened how this receptor can bind to several enveloped viruses. The outcome of these interactions can either mount effective immune responses, boost the productive infection of DCs and favour innate sensing, or fuel viral transmission via trans-infection. Here we review these scenarios focusing on HIV-1 and other enveloped viruses such as Ebola virus or SARS-CoV-2.

Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 102
Charlie Bernier ◽  
Coralie Goetz ◽  
Eric Jubinville ◽  
Julie Jean

Due to rising consumer preference for natural remedies, the search for natural antiviral agents has accelerated considerably in recent years. Among the natural sources of compounds with potential antiviral proprieties, berries are interesting candidates, due to their association with health-promoting properties, including antioxidant, antimutagenic, anticancer, antimicrobial, anti-inflammatory, and neuroprotective properties. The past two decades have witnessed a flurry of new findings. Studies suggest promising antiviral proprieties against enveloped and non-enveloped viruses, particularly of cranberries, blueberries, blackcurrants, black raspberries, and pomegranates. The aim of this review is to assemble these findings, to list the implied mechanisms of action, and thereby point out promising subjects for research in this field, in the hope that compounds obtainable from natural sources such as berries may be used someday to treat, or even prevent, viral infections.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2121
Rosa Giugliano ◽  
Carmine Buonocore ◽  
Carla Zannella ◽  
Annalisa Chianese ◽  
Fortunato Palma Esposito ◽  

Emerging and re-emerging viruses represent a serious threat to human health at a global level. In particular, enveloped viruses are one of the main causes of viral outbreaks, as recently demonstrated by SARS-CoV-2. An effective strategy to counteract these viruses could be to target the envelope by using surface-active compounds. Rhamnolipids (RLs) are microbial biosurfactants displaying a wide range of bioactivities, such as antibacterial, antifungal and antibiofilm, among others. Being of microbial origin, they are environmentally-friendly, biodegradable, and less toxic than synthetic surfactants. In this work, we explored the antiviral activity of the rhamnolipids mixture (M15RL) produced by the Antarctic bacteria Pseudomonas gessardii M15 against viruses belonging to Coronaviridae and Herpesviridae families. In addition, we investigated the rhamnolipids’ mode of action and the possibility of inactivating viruses on treated surfaces. Our results show complete inactivation of HSV-1 and HSV-2 by M15RLs at 6 µg/mL, and of HCoV-229E and SARS-CoV-2 at 25 and 50 µg/mL, respectively. Concerning activity against HCoV-OC43, 80% inhibition of cytopathic effect was recorded, while no activity against naked Poliovirus Type 1 (PV-1) was detectable, suggesting that the antiviral action is mainly directed towards the envelope. In conclusion, we report a significant activity of M15RL against enveloped viruses and demonstrated for the first time the antiviral effect of rhamnolipids against SARS-CoV-2.

2021 ◽  
Vol 22 (23) ◽  
pp. 12719
Kazuo Takayama ◽  
Alberto Tuñón-Molina ◽  
Alba Cano-Vicent ◽  
Yukiko Muramoto ◽  
Takeshi Noda ◽  

The Coronavirus Disease (COVID-19) pandemic is demanding the rapid action of the authorities and scientific community in order to find new antimicrobial solutions that could inactivate the pathogen SARS-CoV-2 that causes this disease. Gram-positive bacteria contribute to severe pneumonia associated with COVID-19, and their resistance to antibiotics is exponentially increasing. In this regard, non-woven fabrics are currently used for the fabrication of infection prevention clothing such as face masks, caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons and shoe covers as protective tools against viral and bacterial infections. However, these non-woven fabrics are made of materials that do not exhibit intrinsic antimicrobial activity. Thus, we have here developed non-woven fabrics with antimicrobial coatings of cranberry extracts capable of inactivating enveloped viruses such as SARS-CoV-2 and the bacteriophage phi 6 (about 99% of viral inactivation in 1 min of viral contact), and two multidrug-resistant bacteria: the methicillin-resistant Staphylococcus aureus and the methicillin-resistant Staphylococcus epidermidis. The morphology, thermal and mechanical properties of the produced filters were characterized by optical and electron microscopy, differential scanning calorimetry, thermogravimetry and dynamic mechanical thermal analysis. The non-toxicity of these advanced technologies was ensured using a Caenorhabditis elegans in vivo model. These results open up a new prevention path using natural and biodegradable compounds for the fabrication of infection prevention clothing in the current COVID-19 pandemic and microbial resistant era.

Sign in / Sign up

Export Citation Format

Share Document