scholarly journals Evidence for Similar Recognition of the Conserved Neutralization Epitopes of Human Immunodeficiency Virus Type 1 Envelope gp120 in Humans and Macaques

2001 ◽  
Vol 75 (19) ◽  
pp. 9287-9296 ◽  
Author(s):  
Susan E. Malenbaum ◽  
David Yang ◽  
Cecilia Cheng-Mayer

ABSTRACT We compared the immune responses to the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins in humans and macaques with the use of clade A and clade B isogenic V3 loop glycan-possessing and -deficient viruses. We found that the presence or absence of the V3 loop glycan affects to similar extents immune recognition by a panel of anti-HIV human and anti-simian/human immunodeficiency virus (anti-SHIV) macaque sera. All sera tested neutralized the glycan-deficient viruses, in which the conserved CD4BS and CD4i epitopes are more exposed, better than the glycan-containing viruses. The titer of broadly neutralizing antibodies appears to be higher in the sera of macaques infected with glycan-deficient viruses. Collectively, our data add legitimacy to the use of SHIV-macaque models for testing the efficacy of HIV-1 Env-based immunogens. Furthermore, they suggest that antibodies to the CD4BS and CD4i sites of gp120 are prevalent in human and macaque sera and that the use of immunogens in which these conserved neutralizing epitopes are more exposed is likely to increase their immunogenicity.

1991 ◽  
Vol 174 (6) ◽  
pp. 1557-1563 ◽  
Author(s):  
S B Jiang ◽  
K Lin ◽  
A R Neurath

Human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (gp120 and gp41) elicit virus-neutralizing antibodies (VNAB) and also antibodies enhancing HIV-1 infection (EAB). Several epitopes eliciting VNAB have been defined, the principal virus-neutralizing determinant being assigned to the V3 loop of gp120. To provide a background for a rational design of anti-HIV vaccines, it also appears important to define domains eliciting EAB. This was accomplished by screening antisera against synthetic peptides covering almost the entire sequence of gp120/gp41 for their enhancing effects on HIV-1 infection of MT-2 cells, a continuous T cell line. Many (16/30) of the antisera significantly enhanced HIV-1 in the presence of human complement. Antibodies to complement receptor type 2 (CR2) abrogated the antibody-mediated enhancement of HIV-1 infection. Antisera to V3 hypervariable loops of 21 distinct HIV-1 isolates were also tested for their enhancing effects on HIV-1IIIB infection. 11 of these sera contained VNAB and 10 enhanced HIV-1IIIB infection. All antisera with virus-enhancing activity contained antibodies crossreactive with the V3 loop of HIV-1IIIB, and the virus-enhancing activity increased with increasing serological crossreactivity. These results suggest that immunization with antigens encompassing V3 loops may elicit EAB rather than protective antibodies if epitopes on the immunogen and the predominant HIV-1 isolate infecting a population are insufficiently matched, i.e., crossreactive serologically but not at the level of virus neutralization.


2006 ◽  
Vol 80 (3) ◽  
pp. 1414-1426 ◽  
Author(s):  
Y. Li ◽  
K. Svehla ◽  
N. L. Mathy ◽  
G. Voss ◽  
J. R. Mascola ◽  
...  

ABSTRACT We previously reported that soluble, stable YU2 gp140 trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein immunogens could elicit improved breadth of neutralization against HIV-1 isolates compared to monomeric YU2 gp120 proteins. In this guinea pig immunization study, we sought to extend these data and determine if adjuvant could quantitatively or qualitatively alter the neutralizing response elicited by trimeric or monomeric immunogens. Consistent with our earlier studies, the YU2 gp140 immunogens elicited higher-titer neutralizing antibodies against homologous and heterologous isolates than those elicited by monomeric YU2 gp120. Additionally, the GlaxoSmithKline family of adjuvants AS01B, AS02A, and AS03 induced higher levels of neutralizing antibodies compared to emulsification of the same immunogens in Ribi adjuvant. Further analysis of vaccine sera indicated that homologous virus neutralization was not mediated by antibodies to the V3 loop, although V3 loop-directed neutralization could be detected for some heterologous isolates. In most gp120-inoculated animals, the homologous YU2 neutralization activity was inhibited by a peptide derived from the YU2 V1 loop, whereas the neutralizing activity elicited by YU2 gp140 trimers was much less sensitive to V1 peptide inhibition. Consistent with a less V1-focused antibody response, sera from the gp140-immunized animals more efficiently neutralized heterologous HIV-1 isolates, as determined by two distinct neutralization formats. Thus, there appear to be qualitative differences in the neutralizing antibody response elicited by YU2 gp140 compared to YU2 monomeric gp120. Further mapping analysis of more conserved regions of gp120/gp41 may be required to determine the neutralizing specificity elicited by the trimeric immunogens.


2000 ◽  
Vol 74 (23) ◽  
pp. 11008-11016 ◽  
Author(s):  
Susan E. Malenbaum ◽  
David Yang ◽  
Lisa Cavacini ◽  
Marshall Posner ◽  
James Robinson ◽  
...  

ABSTRACT We investigated the underlying mechanism by which the highly conserved N-terminal V3 loop glycan of gp120 conferred resistance to neutralization of human immunodeficiency virus type 1 (HIV-1). We find that the presence or absence of this V3 glycan on clade A and B viruses accorded various degrees of susceptibility to neutralization by antibodies to the CD4 binding site, CD4-induced epitopes, and chemokine receptors. Our data suggest that this carbohydrate moiety on gp120 blocks access to the binding site for CD4 and modulates the chemokine receptor binding site of phenotypically diverse clade A and clade B isolates. Its presence also contributes to the masking of CD4-induced epitopes on clade B envelopes. These findings reveal a common mechanism by which diverse HIV-1 isolates escape immune recognition. Furthermore, the observation that conserved functional epitopes of HIV-1 are more exposed on V3 glycan-deficient envelope glycoproteins provides a basis for exploring the use of these envelopes as vaccine components.


2001 ◽  
Vol 75 (9) ◽  
pp. 4165-4175 ◽  
Author(s):  
Norman L. Letvin ◽  
Suzanne Robinson ◽  
Daniela Rohne ◽  
Michael K. Axthelm ◽  
John W. Fanton ◽  
...  

ABSTRACT Vaccine-elicited antibodies specific for the third hypervariable domain of the surface gp120 of human immunodeficiency virus type 1 (HIV-1) (V3 loop) were assessed for their contribution to protection against infection in the simian-human immunodeficiency virus (SHIV)/rhesus monkey model. Peptide vaccine-elicited anti-V3 loop antibody responses were examined for their ability to contain replication of SHIV-89.6, a nonpathogenic SHIV expressing a primary patient isolate HIV-1 envelope, as well as SHIV-89.6P, a pathogenic variant of that virus. Low-titer neutralizing antibodies to SHIV-89.6 that provided partial protection against viremia following SHIV-89.6 infection were generated. A similarly low-titer neutralizing antibody response to SHIV-89.6P that did not contain viremia after infection with SHIV-89.6P was generated, but a trend toward protection against CD4+ T-lymphocyte loss was seen in these infected monkeys. These observations suggest that the V3 loop on some primary patient HIV-1 isolates may be a partially effective target for neutralizing antibodies induced by peptide immunogens.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Christina Guzzo ◽  
Peng Zhang ◽  
Qingbo Liu ◽  
Alice L. Kwon ◽  
Ferzan Uddin ◽  
...  

ABSTRACTThe human immunodeficiency virus type 1 (HIV-1) envelope (Env) trimer evades antibody recognition by adopting a closed prefusion conformation. Here, we show that two conserved tyrosines (Y173, Y177) within the second variable (V2) loop of the gp120 Env glycoprotein are key regulators of the closed, antibody-protected state of the trimer by establishing intramolecular interaction with the base of the third variable (V3) loop. Mutation of Y177 and/or Y173 to phenylalanine or alanine dramatically altered the susceptibility of diverse HIV-1 strains to neutralization, increasing sensitivity to weakly and nonneutralizing antibodies directed against diverse Env regions, consistent with the adoption of an open trimer configuration. Conversely, potent broadly neutralizing antibodies (bNAbs) against different supersites of HIV-1 vulnerability exhibited reduced potency against V2 loop tyrosine mutants, consistent with their preferential targeting of the closed trimer. Mutation of V3 loop residues predicted to interact with the V2 loop tyrosines yielded a similar neutralization phenotype. Sera from chronically HIV-1-infected patients contained very high titers of antibodies capable of neutralizing V2 loop tyrosine mutants but not wild-type viruses, indicating that the bulk of antibodies produced in infected hosts are unable to penetrate the protective shield of the closed trimer. These results identify the tyrosine-mediated V2-V3 loop complex at the trimer apex as a key structural constraint that facilitates HIV-1 evasion from the bulk of host antibodies.IMPORTANCEThe extraordinary ability of human immunodeficiency virus type 1 (HIV-1) to evade host immunity represents a major obstacle to the development of a protective vaccine. Thus, elucidating the mechanisms whereby HIV-1 protects its external envelope (Env), which is the sole target of virus-neutralizing antibodies, is an essential step toward vaccine design. We identified a key structural element that maintains the HIV-1 Env trimer in a closed, antibody-resistant conformation. A major role is played by two conserved tyrosines at the apex of the Env spike, whose mutation causes a global opening of the trimer structure, exposing multiple concealed targets for neutralizing antibodies. We also found that HIV-infected individuals produce very large amounts of antibodies that neutralize the open Env form; however, the bulk of these antibodies are unable to penetrate the tight defensive shield of the native virus. This work may help to devise new strategies to overcome the viral defensive mechanisms and facilitate the development of an effective HIV-1 vaccine.


2007 ◽  
Vol 81 (12) ◽  
pp. 6187-6196 ◽  
Author(s):  
E. S. Gray ◽  
P. L. Moore ◽  
I. A. Choge ◽  
J. M. Decker ◽  
F. Bibollet-Ruche ◽  
...  

ABSTRACT The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.


2003 ◽  
Vol 77 (5) ◽  
pp. 3119-3130 ◽  
Author(s):  
Ming Dong ◽  
Peng Fei Zhang ◽  
Franziska Grieder ◽  
James Lee ◽  
Govindaraj Krishnamurthy ◽  
...  

ABSTRACT We have studied the induction of neutralizing antibodies by in vivo expression of the human immunodeficiency virus type 1 (HIV-1) envelope by using a Venezuelan equine encephalitis virus (VEE) replicon system with mice and rabbits. The HIV-1 envelope, clone R2, has broad sensitivity to cross-reactive neutralization and was obtained from a donor with broadly cross-reactive, primary virus-neutralizing antibodies (donor of reference serum, HIV-1-neutralizing serum 2 [HNS2]). It was expressed as gp160, as secreted gp140, and as gp160ΔCT with the cytoplasmic tail deleted. gp140 was expressed in vitro at a high level and was predominantly uncleaved oligomer. gp160ΔCT was released by cells in the form of membrane-bound vesicles. gp160ΔCT induced stronger neutralizing responses than the other forms. Use of a helper plasmid for replicon particle packaging, in which the VEE envelope gene comprised a wild-type rather than a host range-adapted sequence, also enhanced immunogenicity. Neutralizing activity fractionated with immunoglobulin G. This activity was cross-reactive among a panel of five nonhomologous primary clade B strains and a Chinese clade C strain and minimally reactive against a Chinese clade E (circulating recombinant form 1) strain. The comparative neutralization of these strains by immune mouse sera was similar to the relative neutralizing effects of HNS2, and responses induced in rabbits were similar to those induced in mice. Together, these results demonstrate that neutralizing antibody responses can be induced in mice within 2 to 3 months that are similar in potency and cross-reactivity to those found in the chronically infected, long-term nonprogressive donor of HNS2. These findings support the expectation that induction of highly cross-reactive HIV-1 primary virus-neutralizing activity by vaccination may be realized.


2002 ◽  
Vol 76 (9) ◽  
pp. 4634-4642 ◽  
Author(s):  
Xinzhen Yang ◽  
Juliette Lee ◽  
Erin M. Mahony ◽  
Peter D. Kwong ◽  
Richard Wyatt ◽  
...  

ABSTRACT The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane proteins. Soluble gp140 glycoproteins composed of the uncleaved ectodomains of gp120 and gp41 form unstable, heterogeneous oligomers, but soluble gp140 trimers can be stabilized by fusion with a C-terminal, trimeric GCN4 motif (X. Yang et al., J. Virol. 74:5716-5725, 2000). To understand the influence of the C-terminal trimerization domain on the properties of soluble HIV-1 envelope glycoprotein trimers, uncleaved, soluble gp140 glycoproteins were stabilized by fusion with another trimeric motif derived from T4 bacteriophage fibritin. The fibritin construct was more stable to heat and reducing conditions than the GCN4 construct. Both GCN4- and fibritin-stabilized soluble gp140 glycoproteins exhibited patterns of neutralizing and nonneutralizing antibody binding expected for the functional envelope glycoprotein spike. Of note, two potently neutralizing antibodies, immunoglobulin G1b12 and 2G12, exhibited the greatest recognition of the stabilized, soluble trimers, relative to recognition of the gp120 monomer. The observed similarities between the GCN4 and fibritin constructs indicate that the HIV-1 envelope glycoprotein ectodomains dictate many of the antigenic and structural features of these fusion proteins. The melting temperatures and ligand recognition properties of the GCN4- and fibritin-stabilized soluble gp140 glycoproteins suggest that these molecules assume conformations distinct from that of the fusion-active, six-helix bundle.


2007 ◽  
Vol 81 (17) ◽  
pp. 9268-9278 ◽  
Author(s):  
Erin E. Verity ◽  
Dimitra Zotos ◽  
Kim Wilson ◽  
Catherine Chatfield ◽  
Victoria A. Lawson ◽  
...  

ABSTRACT The Sydney Blood Bank Cohort (SBBC) consists of eight blood transfusion recipients infected with nef-attenuated human immunodeficiency virus type 1 (HIV-1) acquired from a single donor. Here, we show that viral phenotypes and antibody responses differ considerably between individual cohort members, despite the single source of infection. Replication of isolated virus varied from barely detectable to similar to that of the wild-type virus, and virus isolated from five SBBC members showed coreceptor usage signatures unique to each individual. Higher viral loads and stronger neutralizing antibody responses were associated with better-replicating viral strains, and detectable viral replication was essential for the development of strong and sustained humoral immune responses. Despite the presence of strong neutralizing antibodies in a number of SBBC members, disease progression was not prevented, and each cohort member studied displayed a unique outcome of infection with nef-attenuated HIV-1.


Sign in / Sign up

Export Citation Format

Share Document