scholarly journals HumanImmunodeficiency Virus Type 1 DNA Nuclear Import and Integration AreMitosis Independent in CyclingCells

2003 ◽  
Vol 77 (24) ◽  
pp. 13412-13417 ◽  
Author(s):  
Richard A. Katz ◽  
James G. Greger ◽  
Pamela Boimel ◽  
Anna Marie Skalka

ABSTRACT An essential step in human immunodeficiency virus type 1 (HIV-1) replication is the movement of the viral preintegration complex from the cytoplasm into the nucleus. The pathway(s) and timing for HIV-1 DNA nuclear entry in cycling cells have not been established. Here, we show that if cycling cells are infected before S phase, viral DNA can be integrated prior to passage of the host DNA replication fork through the integration site, as indicated by stable inheritance in both daughter cells. We conclude that efficient nuclear entry can occur independently of mitotic nuclear disassembly in cycling cells.

2000 ◽  
Vol 74 (24) ◽  
pp. 11811-11824 ◽  
Author(s):  
Kalpana Gupta ◽  
David Ott ◽  
Thomas J. Hope ◽  
Robert F. Siliciano ◽  
Jef D. Boeke

ABSTRACT Active nuclear import of the human immunodeficiency virus type 1 (HIV-1) preintegration complex (PIC) is essential for the productive infection of nondividing cells. Nuclear import of the PIC is mediated by the HIV-1 matrix protein, which also plays several critical roles during viral entry and possibly during virion production facilitating the export of Pr55Gag and genomic RNA. Using a yeast two-hybrid screen, we identified a novel human virion-associated matrix-interacting protein (VAN) that is highly conserved in vertebrates and expressed in most human tissues. Its expression is upregulated upon activation of CD4+ T cells. VAN is efficiently incorporated into HIV-1 virions and, like matrix, shuttles between the nucleus and cytoplasm. Furthermore, overexpression of VAN significantly inhibits HIV-1 replication in tissue culture. We propose that VAN regulates matrix nuclear localization and, by extension, both nuclear import of the PIC and export of Pr55Gag and viral genomic RNA during virion production. Our data suggest that this regulatory mechanism reflects a more global process for regulation of nucleocytoplasmic transport.


2002 ◽  
Vol 76 (23) ◽  
pp. 12087-12096 ◽  
Author(s):  
Jeffrey D. Dvorin ◽  
Peter Bell ◽  
Gerd G. Maul ◽  
Masahiro Yamashita ◽  
Michael Emerman ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells productively because the nuclear import of viral nucleic acids occurs in the absence of cell division. A number of viral factors that are present in HIV-1 preintegration complexes (PICs) have been assigned functions in nuclear import, including an essential valine at position 165 in integrase (IN-V165) and the central polypurine tract (cPPT). In this article, we report a comparison of the replication and infection characteristics of viruses with disruptions in the cPPT and IN-V165. We found that viruses with cPPT mutations still replicated productively in both dividing and nondividing cells, while viruses with a mutation at IN-V165 did not. Direct observation of the subcellular localization of HIV-1 cDNAs by fluorescence in situ hybridization revealed that cDNAs synthesized by both mutant viruses were readily detected in the nucleus. Thus, neither the cPPT nor the valine residue at position 165 of integrase is essential for the nuclear import of HIV-1 PICs.


2009 ◽  
Vol 84 (1) ◽  
pp. 397-406 ◽  
Author(s):  
Lavanya Krishnan ◽  
Kenneth A. Matreyek ◽  
Ilker Oztop ◽  
Kyeongeun Lee ◽  
Christopher H. Tipper ◽  
...  

ABSTRACT Recent genome-wide screens have highlighted an important role for transportin 3 in human immunodeficiency virus type 1 (HIV-1) infection and preintegration complex (PIC) nuclear import. Moreover, HIV-1 integrase interacted with recombinant transportin 3 protein under conditions whereby Moloney murine leukemia virus (MLV) integrase failed to do so, suggesting that integrase-transportin 3 interactions might underscore active retroviral PIC nuclear import. Here we correlate infectivity defects in transportin 3 knockdown cells with in vitro protein binding affinities for an expanded set of retroviruses that include simian immunodeficiency virus (SIV), bovine immunodeficiency virus (BIV), equine infectious anemia virus (EIAV), feline immunodeficiency virus (FIV), and Rous sarcoma virus (RSV) to critically address the role of integrase-transportin 3 interactions in viral infection. Lentiviruses, with the exception of FIV, display a requirement for transportin 3 in comparison to MLV and RSV, yielding an infection-based dependency ranking of SIV > HIV-1 > BIV and EIAV > MLV, RSV, and FIV. In vitro pulldown and surface plasmon resonance assays, in contrast, define a notably different integrase-transportin 3 binding hierarchy: FIV, HIV-1, and BIV > SIV and MLV > EIAV. Our results therefore fail to support a critical role for integrase binding in dictating transportin 3 dependency during retrovirus infection. In addition to integrase, capsid has been highlighted as a retroviral nuclear import determinant. Accordingly, MLV/HIV-1 chimera viruses pinpoint the genetic determinant of sensitization to transportin 3 knockdown to the HIV-1 capsid protein. We therefore conclude that capsid, not integrase, is the dominant viral factor that dictates transportin 3 dependency during HIV-1 infection.


2006 ◽  
Vol 80 (20) ◽  
pp. 10262-10269 ◽  
Author(s):  
Nathalie Arhel ◽  
Sandie Munier ◽  
Philippe Souque ◽  
Karine Mollier ◽  
Pierre Charneau

ABSTRACT We have previously established, using human immunodeficiency virus type 1 (HIV-1) strain LAI, that the HIV-1 central DNA Flap acts as a cis determinant of viral genome nuclear import. Although the impact of the DNA Flap on nuclear import has already found numerous independent confirmations in the context of lentivirus vectors, it has been claimed that it may be nonessential for infectious virus strains LAI, YU-2 (J. D. Dvorin et al., J. Virol. 76:12087-12096, 2002), HXB2, and NL4-3 (A. Limon et al., J. Virol. 76:12078-12086, 2002). We conducted a detailed analysis of virus infectivity using the provirus clones provided by the authors and analogous target cells. In contrast to published data, our results show that all cPPT mutant viruses exhibit reduced infectivity corresponding to a nuclear import defect irrespective of the viral genetic background or target cell.


2003 ◽  
Vol 77 (13) ◽  
pp. 7582-7589 ◽  
Author(s):  
Michael P. Sherman ◽  
Carlos M. C. de Noronha ◽  
Lauren A. Eckstein ◽  
Jason Hataye ◽  
Pamela Mundt ◽  
...  

ABSTRACT Retroviruses must gain access to the host cell nucleus for subsequent replication and viral propagation. Human immunodeficiency virus type 1 (HIV-1) and other primate lentiviruses are distinguished from the gammaretroviruses by their ability to infect nondividing cells such as macrophages, an important viral reservoir in vivo. Rather than requiring nuclear membrane breakdown during cell division, the HIV-1 preintegration complex (PIC) enters the nucleus by traversing the central aqueous channel of the limiting nuclear pore complex. The HIV-1 PIC contains three nucleophilic proteins, matrix, integrase, and Vpr, all of which have been implicated in nuclear targeting. The mechanism by which Vpr can display such nucleophilic properties and yet also be available for incorporation into virions assembling at the plasma membrane is unresolved. We recently characterized Vpr as a nucleocytoplasmic shuttling protein that contains two novel nuclear import signals and an exportin-1-dependent nuclear export signal (NES). We now demonstrate that mutation of this NES impairs the incorporation of Vpr into newly formed virions. Furthermore, we find that the Vpr NES is required for efficient HIV replication in tissue macrophages present in human spleens and tonsils. These findings underscore how the nucleocytoplasmic shuttling of Vpr not only contributes to nuclear import of the HIV-1 PIC but also enables Vpr to be present in the cytoplasm for incorporation into virions, leading to enhancement of viral spread within nondividing tissue macrophages.


2006 ◽  
Vol 81 (2) ◽  
pp. 677-688 ◽  
Author(s):  
Naomi Tsurutani ◽  
Jiro Yasuda ◽  
Naoki Yamamoto ◽  
Byung-Il Choi ◽  
Motohiko Kadoki ◽  
...  

ABSTRACT Mouse cells do not support human immunodeficiency virus type 1 (HIV-1) replication because of host range barriers at steps including virus entry, transcription, RNA splicing, polyprotein processing, assembly, and release. The exact mechanisms for the suppression, however, are not completely understood. To elucidate further the barriers against HIV-1 replication in mouse cells, we analyzed the replication of the virus in lymphocytes from human CD4/CXCR4 transgenic mice. Although primary splenocytes and thymocytes allowed the entry and reverse transcription of HIV-1, the integration efficiency of the viral DNA was greatly reduced in these cells relative to human peripheral blood mononuclear cells, suggesting an additional block(s) before or at the point of host chromosome integration of the viral DNA. Preintegration processes were further analyzed using HIV-1 pseudotyped viruses. The reverse transcription step of HIV-1 pseudotyped with the envelope of murine leukemia virus or vesicular stomatitis virus glycoprotein was efficiently supported in both human and mouse cells, but nuclear import of the preintegration complex (PIC) of HIV-1 was blocked in mouse cells. We found that green fluorescent protein (GFP)-labeled HIV-1 integrase, which is known to be important in the nuclear localization of the PIC, could not be imported into the nucleus of mouse cells, in contrast to human cells. On the other hand, GFP-Vpr localized exclusively to the nuclei of both mouse and human cells. These observations suggest that, due to the dysfunction of integrase, the nuclear localization of PIC is suppressed in mouse cells.


2004 ◽  
Vol 78 (21) ◽  
pp. 11563-11573 ◽  
Author(s):  
Tamako Ikeda ◽  
Hironori Nishitsuji ◽  
Xin Zhou ◽  
Nobuo Nara ◽  
Takashi Ohashi ◽  
...  

ABSTRACT Nuclear import of viral cDNA is a critical step for establishing the proviral state of human immunodeficiency virus type 1 (HIV-1). The contribution of HIV-1 integrase (IN) to the nuclear import of viral cDNA is controversial, partly due to a lack of identification of its bona fide nuclear localization signal. In this study, to address this putative function of HIV-1 IN, the effects of mutations at key residues for viral cDNA recognition (PYNP at positions 142 to 145, K156, K159, and K160) were evaluated in the context of viral replication. During acute infection, some mutations (N144Q, PYNP>KL, and KKK>AAA) severely reduced viral gene expression to less than 1% the wild-type (WT) level. None of the mutations affected the synthesis of viral cDNA. Meanwhile, the levels of integrated viral cDNA produced by N144Q, PYNP>KL, and KKK>AAA mutants were severely reduced to less than 1% the WT level. Quantitative PCR analysis of viral cDNA in nuclei and fluorescence in situ hybridization analysis showed that these mutations significantly reduced the level of viral cDNA accumulation in nuclei. Further analysis revealed that IN proteins carrying the N144Q, PYNP>KL, and KKK>AAA mutations showed severely reduced binding to viral cDNA but kept their karyophilic properties. Taken together, these results indicate that mutations that reduced the binding of IN to viral cDNA resulted in severe impairment of virus infectivity, most likely by affecting the nuclear import of viral cDNA that proceeds integration. These results suggest that HIV-1 IN may be one of the critical constituents for the efficient nuclear import of viral cDNA.


2000 ◽  
Vol 74 (13) ◽  
pp. 6198-6202 ◽  
Author(s):  
Molly A. Accola ◽  
Åsa Öhagen ◽  
Heinrich G. Göttlinger

ABSTRACT Mature human immunodeficiency virus type 1 (HIV-1) virions contain a typically cone-shaped core that encases the viral genome. In this study, we established conditions which allowed the efficient isolation of morphologically intact HIV-1 cores from virions. The isolated cores consisted mostly of cones which appeared uniformly capped at both ends but were heterogeneous with respect to the shape of the broad cap as well as the dimensions and angle of the cone. Vpr, a nonstructural virion component implicated in the nuclear import of the viral genome, was recovered in core preparations of HIV-1 and simian immunodeficiency viruses from African green monkeys. Unexpectedly, p6 gag , a structural protein required for the incorporation of Vpr, was absent from HIV-1 core preparations. Taken together, our results indicate that the incorporation of Vpr into the virion core is a conserved feature of primate lentiviruses and that the interactions required for the uptake of Vpr into assembling particles differ from those which confine Vpr within the core.


2005 ◽  
Vol 79 (19) ◽  
pp. 12584-12591 ◽  
Author(s):  
Richard Lu ◽  
Nick Vandegraaff ◽  
Peter Cherepanov ◽  
Alan Engelman

ABSTRACT Retroviral integrases (INs) function in the context of preintegration complexes (PICs). Two conserved Lys residues in the N-terminal domain of human immunodeficiency virus type 1 (HIV-1) IN were analyzed here for their roles in integration and virus replication. Whereas HIV-1K46A grew like the wild type, HIV-1K34A was dead. Yet recombinant INK34A protein functioned in in vitro integration assays, and Vpr-INK34A efficiently transcomplemented the infectivity defect of an IN active site mutant virus in cells. HIV-1K34A was therefore similar to a number of previously characterized mutant viruses that failed to replicate despite encoding catalytically competent IN. To directly analyze mutant PIC function, a sensitive PCR-based integration assay was developed. HIV-1K34A and related mutants failed to support detectable levels (<1% of wild type) of integration. We therefore concluded that mutations like K34A disrupted higher-order interactions important for PIC function/maturation compared to the innate catalytic activity of IN enzyme.


Sign in / Sign up

Export Citation Format

Share Document