scholarly journals Recruitment of Herpes Simplex Virus Type 1 Transcriptional Regulatory Protein ICP4 into Foci Juxtaposed to ND10 in Live, Infected Cells

2003 ◽  
Vol 77 (6) ◽  
pp. 3680-3689 ◽  
Author(s):  
Roger D. Everett ◽  
George Sourvinos ◽  
Anne Orr

ABSTRACT At the early stages of herpes simplex virus type 1 (HSV-1) infection, parental viral genomes have a tendency to become juxtaposed to cellular nuclear structures known as PML (promyelocytic leukemia) nuclear bodies or ND10, while the immediate-early (IE) protein ICP0 precisely colocalizes with these structures. Previous indirect-immunofluorescence studies observed that the HSV-1 transcriptional regulator ICP4 has a mainly diffuse nuclear distribution early in infection and is later recruited into viral replication compartments. We have constructed HSV-1 variants expressing ICP4 and ICP0 linked to ECFP and EYFP, respectively, both singly and in combination. Coupled with an efficient method of expressing autofluorescent PML in ND10, we have studied the dynamics of ICP0, ICP4, and ND10 in live, infected cells. The greater sensitivity and lower background signals in live cells revealed that early in infection, ICP4 forms discrete foci, some of which are juxtaposed to ND10, while ICP0 was found to colocalize precisely with PML. As expected from these results, using a double-labeled virus, we observed that foci of ICP0 and ICP4 were also juxtaposed but not colocalized early in infection. Some of the ICP4 foci must have contained parental viral genomes, because they developed into replication compartments. We propose that a proportion of the ND10-associated ICP4 foci represent ICP4 molecules being recruited onto parental viral genomes, a process likely to be a critical step early in lytic infection. These results may be analogous to the localization of IE1 and IE2 during human cytomegalovirus infection, suggesting a principle common to the alpha- and betaherpesviruses.

2006 ◽  
Vol 80 (16) ◽  
pp. 7995-8005 ◽  
Author(s):  
Roger D. Everett ◽  
Sabine Rechter ◽  
Peer Papior ◽  
Nina Tavalai ◽  
Thomas Stamminger ◽  
...  

ABSTRACT Promyelocytic leukemia (PML) nuclear bodies (also known as ND10) are nuclear substructures that contain several proteins, including PML itself, Sp100, and hDaxx. PML has been implicated in many cellular processes, and ND10 are frequently associated with the replicating genomes of DNA viruses. During herpes simplex virus type 1 (HSV-1) infection, the viral regulatory protein ICP0 localizes to ND10 and induces the degradation of PML, thereby disrupting ND10 and dispersing their constituent proteins. ICP0-null mutant viruses are defective in PML degradation and ND10 disruption, and concomitantly they initiate productive infection very inefficiently. Although these data are consistent with a repressive role for PML and/or ND10 during HSV-1 infection, evidence in support of this hypothesis has been inconclusive. By use of short interfering RNA technology, we demonstrate that depletion of PML increases both gene expression and plaque formation by an ICP0-negative HSV-1 mutant, while having no effect on wild-type HSV-1. We conclude that PML contributes to a cellular antiviral repression mechanism that is countered by the activity of ICP0.


2007 ◽  
Vol 81 (20) ◽  
pp. 10991-11004 ◽  
Author(s):  
Roger D. Everett ◽  
Jill Murray ◽  
Anne Orr ◽  
Chris M. Preston

ABSTRACT Herpes simplex virus type 1 (HSV-1) genomes become associated with structures related to cellular nuclear substructures known as ND10 or promyelocytic leukemia nuclear bodies during the early stages of lytic infection. This paper describes the relationship between HSV-1 genomes and ND10 in human fibroblasts that maintain the viral genomes in a quiescent state. We report that quiescent HSV-1 genomes detected by fluorescence in situ hybridization (FISH) are associated with enlarged ND10-like structures, frequently such that the FISH-defined viral foci are apparently enveloped within a sphere of PML and other ND10 proteins. The number of FISH viral foci in each quiescently infected cell is concordant with the input multiplicity of infection, with each structure containing no more than a small number of viral genomes. A proportion of the enlarged ND10-like foci in quiescently infected cells contain accumulations of the heterochromatin protein HP1 but not other common markers of heterochromatin such as histone H3 di- or trimethylated on lysine residue 9. Many of the virally induced enlarged ND10-like structures also contain concentrations of conjugated ubiquitin. Quiescent infections can be established in cells that are highly depleted for PML. However, during the initial stages of establishment of a quiescent infection in such cells, other ND10 proteins (Sp100, hDaxx, and ATRX) are recruited into virally induced foci that are likely to be associated with HSV-1 genomes. These observations illustrate that the intimate connections between HSV-1 genomes and ND10 that occur during lytic infection also extend to quiescent infections.


1996 ◽  
Vol 7 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Kyoko Hayashi ◽  
Toshimitsu Hayashi

The antiviral activity of scopadulciol (SDC), a tetracyclic diterpenoid with a chemical structure related to that of aphidicolin, isolated from Scoparia dulcis, was studied in vitro against herpes simplex virus type 1 (HSV-1). SDC was found to inhibit the virus replication as shown by reduction of virus production. The action was not due to the inhibition of viral DNA polymerase activity and virus penetration, but might involve, at least in part, a virucidal effect. SDC did not suppress the viral protein synthesis of infected cells when added at an early stage of HSV-1 replication, but did when added later. When aciclovir (ACV) and SDC were evaluated in combination for antiviral activity against HSV-1 replication and cytotoxicity, these drugs inhibited viral replication in HeLa cells synergistically, but the same combination did not produce synergistic cytotoxicity in HeLa cells. Studies of the deoxynucleotide pool sizes revealed that SDC increased the intracellular dNTP pools and ACV triphosphate level significantly in infected cells when the cells were treated with the combination. These results could account for the synergistic action between SDC and ACV.


2002 ◽  
Vol 76 (10) ◽  
pp. 4785-4791 ◽  
Author(s):  
Philippa M. Beard ◽  
Naomi S. Taus ◽  
Joel D. Baines

ABSTRACT Previous studies have indicated that the UL6, UL15, UL17, UL28, UL32, and UL33 genes are required for the cleavage and packaging of herpes simplex viral DNA. To identify proteins that interact with the UL28-encoded DNA binding protein of herpes simplex virus type 1 (HSV-1), a previously undescribed rabbit polyclonal antibody directed against the UL28 protein fused to glutathione S-transferase was used to immunopurify UL28 and the proteins with which it associated. It was found that the antibody specifically coimmunoprecipitated proteins encoded by the genes UL28, UL15, and UL33 from lysates of both HEp-2 cells infected with HSV-1(F) and insect cells infected with recombinant baculoviruses expressing these three proteins. In reciprocal reactions, antibodies directed against the UL15- or UL33-encoded proteins also coimmunoprecipitated the UL28 protein. The coimmunoprecipitation of the three proteins from HSV-infected cells confirms earlier reports of an association between the UL28 and UL15 proteins and represents the first evidence of the involvement of the UL33 protein in this complex.


2000 ◽  
Vol 81 (10) ◽  
pp. 2385-2396 ◽  
Author(s):  
Alana M. Thackray ◽  
Hugh J. Field

Both famciclovir (FCV) and valaciclovir (VACV) are potent inhibitors of herpes simplex virus type 1 (HSV-1) in a murine cutaneous infection model. The object of the present study was to determine whether either drug had an effect on the anatomical distribution of infected neurons in the peripheral nervous system and to assess the consequences for infected cells during, immediately following and several months after a 9 day period of continuous treatment. Mice were inoculated via the neck with a recombinant strain of HSV-1 expressing the lacZ reporter gene under the immediate-early gene promoter. Sensory ganglia were sampled daily up to day 11 post-inoculation (p.i.) and infected cells were detected by means of the reporter gene product. Ganglia were also removed at 1·5 and 10 months p.i. and latency was assessed by explant co-cultivation and by using in situ hybridization to detect LAT-expressing neurons. While both drugs reduced the severity of acute infection markedly, neither compound completely prevented the relentless distribution of infection among peripheral nervous tissue. Furthermore, there was a difference between the compounds regarding the expression of the reporter gene during and after termination of treatment and in the number of residual LAT-positive neurons.


2002 ◽  
Vol 76 (13) ◽  
pp. 6473-6479 ◽  
Author(s):  
Dool-Bboon Kim ◽  
Neal A. DeLuca

ABSTRACT The expression of most herpes simplex virus type 1 (HSV-1) immediate-early (IE) and early (E) genes decreases late in productive infection. IE and E promoters contain various binding sites for cellular activators, including sites for Sp1, upstream of the TATA box, while late gene promoters generally lack such sites. To address the possibility that Sp1 function may be altered during the course of infection, the modification state and activity of Sp1 were investigated as a function of infection. Sp1 was quantitatively phosphorylated in HSV-1-infected cells without a significant change in abundance. The kinetics of accumulation of phosphorylated Sp1 immediately preceded the decline in E gene (thymidine kinase gene [tk]) mRNA abundance. Phosphorylation of Sp1 required ICP4; however, the proportion of phosphorylated Sp1 was reduced during infection in the presence of phosphonoacetic acid or in the absence of ICP27. While the DNA binding activity of Sp1 was not greatly affected by phosphorylation, the ability of phosphorylated Sp1 isolated from HSV-infected cells to activate transcription in vitro was decreased. These studies suggest that modification of Sp1 may contribute to the decrease of IE and E gene expression late in infection.


2007 ◽  
Vol 81 (12) ◽  
pp. 6459-6470 ◽  
Author(s):  
Fan Mou ◽  
Tom Forest ◽  
Joel D. Baines

ABSTRACT The herpes simplex virus type 1 (HSV-1) US3 gene encodes a serine/threonine kinase that, when inactivated, causes capsids to aggregate aberrantly between the inner and outer nuclear membranes (INM and ONM, respectively) within evaginations/extensions of the perinuclear space. In both Hep2 cells and an engineered cell line derived from Hep2 cells expressing lamin A/C fused to enhanced green fluorescent protein (eGFP-lamin A/C), lamin A/C localized mostly in a reticular pattern with small regions of the INM devoid of eGFP-lamin A/C when they were either mock infected or infected with wild-type HSV-1(F). Cells infected with HSV-1(F) also contained some larger diffuse regions lacking lamin A/C. Proteins UL31 and UL34, markers of potential envelopment sites at the INM and perinuclear virions, localized within the regions devoid of lamin A/C and also in regions containing lamin A/C. Similar to previous observations with Vero cells (S. L. Bjerke and R. J. Roller, Virology 347:261-276, 2006), the proteins UL34 and UL31 localized exclusively in very discrete regions of the nuclear lamina lacking lamin A/C in the absence of US3 kinase activity. To determine how US3 alters lamin A/C distribution, US3 was purified and shown to phosphorylate lamin A/C at multiple sites in vitro, despite the presence of only one putative US3 kinase consensus site in the lamin A/C sequence. US3 kinase activity was also sufficient to invoke partial solubilization of lamin A/C from permeabilized Hep2 cell nuclei in an ATP-dependent manner. Two-dimensional electrophoretic analyses of lamin A/C revealed that lamin A/C is phosphorylated in HSV-infected cells, and the full spectrum of phosphorylation requires US3 kinase activity. These data suggest that US3 kinase activity regulates HSV-1 capsid nuclear egress at least in part by phosphorylation of lamin A/C.


2007 ◽  
Vol 88 (6) ◽  
pp. 1683-1688 ◽  
Author(s):  
Peter Norberg ◽  
Sigvard Olofsson ◽  
Mads Agervig Tarp ◽  
Henrik Clausen ◽  
Tomas Bergström ◽  
...  

Glycoprotein I (gI) of herpes simplex virus type 1 (HSV-1) contains a tandem repeat (TR) region including the amino acids serine and threonine, residues that can be utilized for O-glycosylation. The length of this TR region was determined for 82 clinical HSV-1 isolates and the results revealed a polymorphic distribution of two to six or eight repeated blocks with a majority harbouring between two and four repeats. Assessment of the O-glycosylation capacity of an acceptor peptide (STPSTTTSTPSTTT), representing two of the gI blocks, showed that the peptide was a universal substrate for O-glycosylation not only for the two most commonly expressed N-acetyl-d-galactosamine (GalNAc)-T1 and -T2 transferases, but also for the GalNAc-T3, -T4 and -T11 transferases. Immunoblotting of virus-infected cells showed that gI was exclusively O-glycosylated with GalNAc monosaccharides (Tn antigen). A polymorphic mucin region has not been described previously for HSV-1 and is a unique finding, as repeated blocks within gI homologues are lacking in other alphaherpesviruses.


2005 ◽  
Vol 79 (8) ◽  
pp. 5078-5089 ◽  
Author(s):  
Roger D. Everett ◽  
Jill Murray

ABSTRACT Infections with DNA viruses commonly result in the association of viral genomes and replication compartments with cellular nuclear substructures known as promyelocytic leukemia protein (PML) nuclear bodies or ND10. While there is evidence that viral genomes can associate with preexisting ND10, we demonstrate in this study by live-cell microscopy that structures resembling ND10 form de novo and in association with viral genome complexes during the initial stages of herpes simplex virus type 1 (HSV-1) infection. Consistent with previous studies, we found that the major ND10 proteins PML, Sp100, and hDaxx are exchanged very rapidly between ND10 foci and the surrounding nucleoplasm in live cells. The dynamic nature of the individual protein molecule components of ND10 provides a mechanism by which ND10 proteins can be recruited to novel sites during virus infection. These observations explain why the genomes and replication compartments of DNA viruses that replicate in the cell nucleus are so commonly found in association with ND10. These findings are discussed with reference to the nature, location, and potential number of HSV-1 prereplication compartments and to the dynamic aspects of HSV-1 genomes and viral products during the early stages of lytic infection.


2000 ◽  
Vol 74 (23) ◽  
pp. 11322-11328 ◽  
Author(s):  
Helen E. Bryant ◽  
David A. Matthews ◽  
Sarah Wadd ◽  
James E. Scott ◽  
Joy Kean ◽  
...  

ABSTRACT The herpes simplex virus type 1 (HSV-1) immediate-early gene IE63 (ICP27), the only HSV-1 regulatory gene with a homologue in every mammalian and avian herpesvirus sequenced so far, is a multifunctional protein which regulates transcriptional and posttranscriptional processes. One of its posttranscriptional effects is the inhibition of splicing of viral and cellular transcripts. We previously identified heterogeneous nuclear ribonucleoprotein (hnRNP) K and casein kinase 2 (CK2) as two protein partners of IE63 (H. Bryant et al., J. Biol. Chem. 274:28991–28998, 1999). Here, using a yeast two-hybrid assay, we identify another partner of IE63, the cellular protein p32. Confirmation of this interaction was provided by coimmunoprecipitation from virus-infected cells and recombinant p32 binding assays. A p32-hnRNP K-CK2 complex, which required IE63 to form, was isolated from HSV-1-infected cells, and coimmunoprecipitating p32 was phosphorylated by CK2. Expression of IE63 altered the cytoplasmic distribution of p32, with some now colocalizing with IE63 in the nuclei of infected and transfected cells. As p32 copurifies with splicing factors and can inhibit splicing, we propose that IE63 together with p32, possibly with other IE63 partner proteins, acts to disrupt or regulate pre-mRNA splicing. As well as contributing to host cell shutoff, this effect could facilitate splicing-independent nuclear export of viral transcripts.


Sign in / Sign up

Export Citation Format

Share Document