hnrnp k
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 42)

H-INDEX

39
(FIVE YEARS 4)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3317-3317
Author(s):  
Sean M Post ◽  
Marisa J Aitken ◽  
Prerna Malaney ◽  
Xiaorui Zhang ◽  
Todd Link ◽  
...  

Abstract Mutations in RNA binding proteins have been identified as pathogenic drivers in many hematological malignancies. However, in addition to mutational status, expression changes in RNA binding proteins likely impact disease processes. Through our studies, we identified that overexpression of hnRNP K (heterogeneous ribonucleoprotein K) -a poly(C)-RNA binding protein that governs the expression of numerous genes and transcripts- plays a pivotal role in myeloid malignancies. Using clinical samples, we determined that hnRNP K overexpression is a recurrent abnormality, occurring in nearly 30% of AML cases. Importantly, elevated hnRNP K levels associate with decreased overall survival (24.3 months versus 48.7 months; HR 1.9; 95% CI 1.3-2.7). However, the role of hnRNP K overexpression in AML remains unclear. To evaluate its putative oncogenic potential, we overexpressed hnRNP K in murine fetal liver cells (FLCs). Using colony formation assays (CFAs), we demonstrated that hnRNP K-overexpressing FLCs have an altered differentiation potential (increased number of immature (c-kit +Sca-1 +) and decreased number of mature myeloid (Gr1 +CD11b +) cells) and an increase in self-renewal capacity (increased number of colonies) (p=0.008). Mice transplanted with hnRNP K overexpressing FLCs had markedly shortened survival compared to empty vector controls, despite similar engraftment (median survival 8.1 weeks versus median not reached (HR 3.0, 95% CI 1.2 - 7.3, p=0.02). Significantly, extramedullary hematopoiesis was observed in the spleens and the hepatic parenchyma of mice transplanted with FLCs that overexpress hnRNP K. This resulted in disrupted splenic architecture and the presence of immature hematopoietic cells and cells of myeloid origin (CD117, CD14, and myeloperoxidase). Furthermore, analyses of the bone marrow revealed an increase in myeloid cells in hnRNP K transplanted mice. We next used unbiased and biochemical approaches to discover a direct interaction between hnRNP K and the RUNX1 transcript-a critical transcriptional factor often dysregulated in leukemia. Molecular analyses revealed hnRNP K-dependent alternative splicing of RUNX1 (delExon6) , resulting in the generation of a functionally distinct isoform that is more stable than full-length RUNX1. RNA-Seq and reporter assays demonstrated that delExon6 has a unique transcriptional profile compared to full-length RUNX1, suggesting this spliced transcript may have a pathogenic role. To examine the functionality of delExon6, we performed CFAs. Here, we observed that delExon6 expression results in an increased proliferation potential that is mediated by hnRNP K's RNA binding activity. Together, these data establish hnRNP K as an oncogene in myeloid leukemia through its ability to directly bind the RUNX1 transcript, modify RUNX1 splicing, and subsequently alter its transcriptional activity. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2226-2226
Author(s):  
Sean M Post ◽  
Prerna Malaney ◽  
Lauren Chan ◽  
Xiaorui Zhang ◽  
Todd Link ◽  
...  

Abstract hnRNP K (heterogeneous ribonucleoprotein K) is an RNA-binding protein that binds to conserved poly-C rich tracks in RNA and influences a diverse set of molecular pathways involved in tumorigenesis. Our previous studies identified hnRNP K overexpression in patients with diffuse large B-cell lymphoma (46/75, 61%) and acute myeloid leukemia (45/160, 28%). This overexpression correlates with dismal clinical outcomes and a lack of therapeutic responses to standard treatment. To explore hnRNP K's in vivo functions, we generated Hnrnpk-transgenic mouse models. These mice develop lymphoma phenotypes through activation of the c-Myc pathway. In pre-clinical settings, bromodomain inhibitors disrupted hnRNP K-mediated c-Myc activation, demonstrating that hnRNP K overexpression mediated-pathways are amenable to therapeutic intervention. To further our studies, we used IP-mass spectrometry, RNA-sequencing, RNA immunoprecipitation, reverse phase protein analyses, and polysome profiling to identify novel pathways associated with changes in hnRNP K expression. Here, we observed that alterations in hnRNP K expression result in an impairment of ribosomal biogenesis and activation of pathways directly responsible for global translation. Using both knockdown and overexpression systems, we observed a direct correlation between hnRNP K expression and expression of S6, S6K, phosphorylated S6, eIF and mTOR pathways and uncovered defects in rRNA splicing. Collectively, these data indicate that impairment of cap-dependent loading and alterations in ribogenesis may be a driving force in the clinical manifestations of hnRNP K-driven malignancies. Furthermore, these results suggest that translational-inhibitors may be useful in exploiting hnRNP K-dependent vulnerabilities. To examine this aspect, we are currently using FDA-approved translation inhibitors and disruptors of ribogenesis (e.g. homoharringtonineand mTOR-inhibitors) and KTP- compounds, respectively. While these indirect targeting strategies are interesting, our results indicate that hnRNP K also regulates cellular programs outside of translation. Thus, potential therapies that effectively target hnRNP K overexpression will require direct inhibition of its RNA binding functions. To this end, we used several screening assays including fluorescence anisotropy (FA), surface plasmon resonance, SYPRO-orange thermal shift assays, and cell proliferation assays to screen 80,000 small molecule compounds which led to the identification of 9 candidates that disrupt hnRNP K-mRNA interactions and cause cell death in an hnRNP K-dependent manner. Further, cellular thermal shift assays revealed these lead compounds engage hnRNP K within cells and most critically, result in reduced expression of hnRNP K targets in vivo. These candidate compounds as well as potentially more potent structural analogs are currently being evaluated. Collectively, our results demonstrate that the oncogenic functions of hnRNP K are amenable to both indirect therapeutic intervention using FDA-approved agents as well as direct inhibition through newly identified small molecule compounds, signifying that there may be a roadmap to effective therapies for hnRNP K-dependent malignancies. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
pp. 112909
Author(s):  
Fengjin Zhao ◽  
Shizhong Qin ◽  
Li Huang ◽  
Langjin Ding ◽  
Xingyuan Shi ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao Liu ◽  
Jinran Lin ◽  
Hao Wu ◽  
Yilun Wang ◽  
Lin Xie ◽  
...  

Objective: The mechanism of CD4+ T-cell dysfunction in systemic lupus erythematosus (SLE) has not been fully understood. Increasing evidence show that long noncoding RNAs (lncRNAs) can regulate immune responses and take part in some autoimmune diseases, while little is known about the lncRNA expression and function in CD4+ T of SLE. Here, we aimed to detect the expression profile of lncRNAs in lupus CD4+ T cells and explore the mechanism that how lincRNA00892 in CD4+ T cells is involved in the pathogenesis of SLE.Methods: The expression profiles of lncRNAs and mRNAs in CD4+ T cells from SLE patients and healthy controls were detected by microarray. LincRNA00892 and CD40L were chosen for validation by quantitative real-time PCR (qRT-PCR). Coexpression network was conducted to predict the potential target genes of lincRNA00892. Then lincRNA00892 was overexpressed in normal CD4+ T cells via lentivirus transfection. The expression of lincRNA00892 was detected by qRT-PCR. The expression of CD40L was detected by qRT-PCR, western blotting, and flow cytometry, respectively. The expression of CD69 and CD23 was measured by flow cytometry. The secretion of IgG was determined by enzyme-linked immunosorbent assay (ELISA). The proteins targeted by lincRNA00892 were measured by RNA pulldown and subsequent mass spectrometry (MS). The interaction between heterogeneous nuclear ribonucleoprotein K (hnRNP K) and lincRNA00892 or CD40L was detected by RNA immunoprecipitation (RIP) assay.Results: A total of 1887 lncRNAs and 3375 mRNAs were found to be aberrantly expressed in CD4+ T cells of SLE patients compared to healthy controls. LincRNA00892 and CD40L were confirmed to be upregulated in CD4+ T cells of SLE patients by qRT-PCR. The lncRNA–mRNA coexpression network analysis indicated that CD40L was a potential target of lincRNA00892. Overexpression of lincRNA00892 enhanced CD40L protein levels while exerting little influence on CD40L mRNA levels in CD4+ T cells. In addition, lincRNA00892 could induce the activation of CD4+ T cells. Furthermore, lincRNA00892 led to the activation of B cells and subsequent secretion of IgG in a CD4+ T-cell–dependent manner. Finally, hnRNP K was found to be among the proteins pulled down by lincRNA00892, and hnRNP K could bind to lincRNA00892 or CD40L directly.Conclusion: Our results showed that the lncRNA expression profile was altered in CD4+ T cells of SLE. LincRNA00892 possibly contributed to the pathogenesis of SLE by targeting hnRNP K and subsequently upregulating CD40L expression to activate CD4+ T and B cells. These provided us a potential target for further mechanistic studies of SLE pathogenesis.


Author(s):  
Alexander Bampton ◽  
Ariana Gatt ◽  
Jack Humphrey ◽  
Sara Cappelli ◽  
Dipanjan Bhattacharya ◽  
...  

AbstractHeterogeneous nuclear ribonucleoproteins (HnRNPs) are a group of ubiquitously expressed RNA-binding proteins implicated in the regulation of all aspects of nucleic acid metabolism. HnRNP K is a member of this highly versatile hnRNP family. Pathological redistribution of hnRNP K to the cytoplasm has been linked to the pathogenesis of several malignancies but, until now, has been underexplored in the context of neurodegenerative disease. Here we show hnRNP K mislocalisation in pyramidal neurons of the frontal cortex to be a novel neuropathological feature that is associated with both frontotemporal lobar degeneration and ageing. HnRNP K mislocalisation is mutually exclusive to TDP-43 and tau pathological inclusions in neurons and was not observed to colocalise with mitochondrial, autophagosomal or stress granule markers. De-repression of cryptic exons in RNA targets following TDP-43 nuclear depletion is an emerging mechanism of potential neurotoxicity in frontotemporal lobar degeneration and the mechanistically overlapping disorder amyotrophic lateral sclerosis. We silenced hnRNP K in neuronal cells to identify the transcriptomic consequences of hnRNP K nuclear depletion. Intriguingly, by performing RNA-seq analysis we find that depletion of hnRNP K induces 101 novel cryptic exon events. We validated cryptic exon inclusion in an SH-SY5Y hnRNP K knockdown and in FTLD brain exhibiting hnRNP K nuclear depletion. We, therefore, present evidence for hnRNP K mislocalisation to be associated with FTLD and for this to induce widespread changes in splicing.


2021 ◽  
Author(s):  
Jialin Yao ◽  
Qiao Zhou ◽  
Hengyi Xiao ◽  
Da Jia ◽  
Qingxiang Sun

Abstract The majority of lncRNAs and a small fraction of mRNAs localize in the cell nucleus to exert their functions. A SIRLOIN RNA motif was previously reported to drive its nuclear localization by the RNA-binding protein hnRNP K. However, the underlying mechanism remains unclear. Here, we report crystal structures of hnRNP K in complex with SIRLOIN, and with the nuclear import receptor (NIR) Impα1, respectively. The protein hnRNP K bound to SIRLOIN with multiple weak interactions, and interacted Impα1 using an independent high-affinity site. Forming a complex with hnRNP K and Impα1 was essential for the nuclear and stress granule localization of SIRLOIN in semi-permeabilized cells. Nuclear import of SIRLOIN enhanced with increasing NIR concentrations, but its stress granule localization peaked at a low NIR concentration. Collectively, we propose a mechanism of SIRLOIN localization, in which NIRs functioned as drivers/regulators, and hnRNP K as an adaptor.


2021 ◽  
Vol 12 ◽  
Author(s):  
Allison R. Wagner ◽  
Haley M. Scott ◽  
Kelsi O. West ◽  
Krystal J. Vail ◽  
Timothy C. Fitzsimons ◽  
...  

Pathogen sensing via pattern recognition receptors triggers massive reprogramming of macrophage gene expression. While the signaling cascades and transcription factors that activate these responses are well-known, the role of post-transcriptional RNA processing in modulating innate immune gene expression remains understudied. Given their crucial role in regulating pre-mRNA splicing and other RNA processing steps, we hypothesized that members of the SR/hnRNP protein families regulate innate immune gene expression in distinct ways. We analyzed steady state gene expression and alternatively spliced isoform production in ten SR/hnRNP knockdown RAW 264.7 macrophage-like cell lines following infection with the bacterial pathogen Salmonella enterica serovar Typhimurium (Salmonella). We identified thousands of transcripts whose abundance is increased or decreased by SR/hnRNP knockdown in macrophages. Notably, we observed that SR and hnRNP proteins influence expression of different genes in uninfected versus Salmonella-infected macrophages, suggesting functionalization of these proteins upon pathogen sensing. Likewise, we found that knockdown of SR/hnRNPs promoted differential isoform usage (DIU) for thousands of macrophage transcripts and that these alternative splicing changes were distinct in uninfected and Salmonella-infected macrophages. Finally, having observed a surprising degree of similarity between the differentially expressed genes (DEGs) and DIUs in hnRNP K and U knockdown macrophages, we found that hnRNP K and U knockdown macrophages are both more restrictive to Vesicular Stomatitis Virus (VSV), while hnRNP K knockdown macrophages are more permissive to Salmonella Typhimurium. Based on these findings, we conclude that many innate immune genes evolved to rely on one or more SR/hnRNPs to ensure the proper magnitude of their induction, supporting a model wherein pre-mRNA splicing is critical for regulating innate immune gene expression and controlling infection outcomes in macrophages ex vivo.


FEBS Open Bio ◽  
2021 ◽  
Author(s):  
Karina Stringhetta Padovani ◽  
Renata Nishida Goto ◽  
Lais Brigliadori Fugio ◽  
Cristiana Bernadelli Garcia ◽  
Vani Maria Alves ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document