lytic infection
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 34)

H-INDEX

41
(FIVE YEARS 5)

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2289
Author(s):  
Shirley E. Braspenning ◽  
Robert Jan Lebbink ◽  
Daniel P. Depledge ◽  
Claudia M. E. Schapendonk ◽  
Laura A. Anderson ◽  
...  

Primary varicella-zoster virus (VZV) infection leads to varicella and the establishment of lifelong latency in sensory ganglion neurons. Reactivation of latent VZV causes herpes zoster, which is frequently associated with chronic pain. Latent viral gene expression is restricted to the VZV latency-associated transcript (VLT) and VLT-ORF63 (VLT63) fusion transcripts. Since VLT and VLT63 encode proteins that are expressed during lytic infection, we investigated whether pVLT and pVLT-ORF63 are essential for VZV replication by performing VZV genome mutagenesis using CRISPR/Cas9 and BAC technologies. We first established that CRISPR/Cas9 can efficiently mutate VZV genomes in lytically VZV-infected cells through targeting non-essential genes ORF8 and ORF11 and subsequently show recovery of viable mutant viruses. By contrast, the VLT region was markedly resistant to CRISPR/Cas9 editing. Whereas most mutants expressed wild-type or N-terminally altered versions of pVLT and pVLT-ORF63, only a minority of the resulting mutant viruses lacked pVLT and pVLT-ORF63 coding potential. Growth curve analysis showed that pVLT/pVLT-ORF63 negative viruses were viable, but impaired in growth in epithelial cells. We confirmed this phenotype independently using BAC-derived pVLT/pVLT-ORF63 negative and repaired viruses. Collectively, these data demonstrate that pVLT and/or pVLT-ORF63 are dispensable for lytic VZV replication but promote efficient VZV infection in epithelial cells.


2021 ◽  
Author(s):  
Daniel A Schwartz ◽  
Brent K Lehmkuhl ◽  
Jay T Lennon

By entering a reversible state of reduced metabolic activity, dormant microorganisms are able to tolerate suboptimal conditions that would otherwise reduce their fitness. Dormancy may also benefit bacteria by serving as a refuge from parasitic infections. Here we focus on dormancy in the Firmicutes, where endospore development is transcriptionally regulated by the expression of sigma factors. A disruption of this process could influence the survivorship and reproduction of phages that infect spore-forming hosts with implications for coevolutionary dynamics. Here, we characterized the distribution and diversity of sigma factors in nearly 3,500 phage genomes. Homologs of sporulation-specific sigma factors were identified in phages that infect spore-forming hosts. Unlike sigma factors required for phage reproduction, the sporulation-like sigma factors were non-essential for lytic infection. However, when expressed in the spore-forming Bacillus subtilis, sigma factors from phages activated the bacterial sporulation gene network and reduced spore yield. Our findings suggest that the acquisition of host-like transcriptional regulators may allow phages to manipulate a complex and ancient trait in one of the most abundant cell types on Earth.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zachary C. Elmore ◽  
L. Patrick Havlik ◽  
Daniel K. Oh ◽  
Leif Anderson ◽  
George Daaboul ◽  
...  

AbstractAdeno-associated viruses (AAV) rely on helper viruses to transition from latency to lytic infection. Some AAV serotypes are secreted in a pre-lytic manner as free or extracellular vesicle (EV)-associated particles, although mechanisms underlying such are unknown. Here, we discover that the membrane-associated accessory protein (MAAP), expressed from a frameshifted open reading frame in the AAV cap gene, is a novel viral egress factor. MAAP contains a highly conserved, cationic amphipathic domain critical for AAV secretion. Wild type or recombinant AAV with a mutated MAAP start site (MAAPΔ) show markedly attenuated secretion and correspondingly, increased intracellular retention. Trans-complementation with MAAP restored secretion of multiple AAV/MAAPΔ serotypes. Further, multiple processing and analytical methods corroborate that one plausible mechanism by which MAAP promotes viral egress is through AAV/EV association. In addition to characterizing a novel viral egress factor, we highlight a prospective engineering platform to modulate secretion of AAV vectors or other EV-associated cargo.


2021 ◽  
Author(s):  
Daniel Macveigh-Fierro ◽  
Angelina Cicerchia ◽  
Ashley Cadorette ◽  
Vasudha Sharma ◽  
Mandy Muller

The role m6A modifications have increasingly been associated with diverse set of roles in modulating viruses and influencing the outcomes of viral infection. Here we report that the landscape of m6A deposition is drastically shifted during KSHV (Kaposi Sarcoma Associated herpesvirus) lytic infection for both viral and host transcripts. In line with previous reports, we also saw an overall decrease in host methylation in favor of viral mRNA along with 5' hypomethylation and 3' hypermethylation. During KSHV lytic infection, a major shift in overall mRNA abundance is driven by the viral endoribonuclease SOX, which induces the decay of greater than 70% of transcripts. Here, we reveal that Interlukin-6 (IL-6) mRNA, a well-characterized SOX-resistant transcript, is m6A modified during lytic infection. Furthermore, we show that this modification falls within the IL-6 SOX Resistance Element (SRE), an RNA element in IL-6 3' UTR that was previously shown to be sufficient for protection from SOX cleavage. We show that the presence of this m6A modification is essential to confer SOX resistance to the IL-6 mRNA. We next show that this modification recruits the m6A reader YTHDC2 and found that YTHDC2 is necessary for the escape of the IL-6 transcript. These results shed light on how the host cell has evolved to use RNA modifications to circumvent viral manipulation of RNA fate during KSHV infection.


2021 ◽  
Vol 9 (8) ◽  
pp. 1681
Author(s):  
Poornima Roy ◽  
Katy Moffat ◽  
Venugopal Nair ◽  
Yongxiu Yao

Marek’s disease (MD) is an immunosuppressive and highly contagious lymphoproliferative disease caused by Marek’s disease virus (MDV) in poultry. Lymphoblastoid cell lines (LCLs) generated ex vivo from MD lymphomas are considered excellent models to study virus-host molecular interactions. LCLs mostly have latently infected MDV genome, but many of them also have varying populations of lytically-infected cells, thus making them very suitable to examine the molecular events associated with the switch from latent to lytic infection. MDV-encoded phosphoprotein 38 (pp38) is readily detectable in lytically-infected LCLs and hence considered as a biomarker for lytic infection. Whilst previous studies have suggested that pp38 is essential for the early cytolytic infection of B-cells, its role in the switch from latent to lytic infection of LCLs is still unclear. pp24, another phosphorylated protein in the same protein complex, shares the same promoter and N-terminal 65 amino acids as pp38. In this study we employed CRISPR activation (CRISPRa) technology for targeted activation of pp38/pp24 in LCLs to investigate their role in inducing lytic infection. Our results show that enforced expression of pp38/pp24 through CRISPRa induces orchestrated upregulation of other MDV genes including ICP4, gB, Meq and pp14 as well as differential expression of host genes thereby facilitating lytic infection. Our results also show that pp38/pp24 expression induces the lytic switch through inhibiting apoptosis.


2021 ◽  
Author(s):  
Betty Lau ◽  
Karen Kerr ◽  
Salvatore Camiolo ◽  
Katie Nightingale ◽  
Quan Gu ◽  
...  

Long non-coding RNAs are frequently associated with broad modulation of gene expression and thus provide the cell with the ability to synchronize entire metabolic processes. We used transcriptomic approaches to investigate whether the most abundant human cytomegalovirus-encoded lncRNA, RNA2.7, has this characteristic. By comparing cells infected with wild-type virus (WT) with cells infected with RNA2.7 deletion mutants, RNA2.7 was implicated in regulating a large number of cellular genes late in lytic infection. Pathway analysis indicated that >100 of these genes are associated with promoting cell movement, and the ten most highly regulated of these were validated in further experiments. Morphological analysis and live cell tracking of WT- and RNA2.7 mutant-infected cells indicated that RNA2.7 is involved in promoting the movement and detachment of infected cells late in infection, and plaque assays using sparse cell monolayers indicated that RNA2.7 is also involved in promoting cell-to-cell spread of virus. Consistent with the observation that upregulated mRNAs are relatively A+U-rich, which is a trait associated with transcript instability, and that they are also enriched in motifs associated with mRNA instability, transcriptional inhibition experiments on WT- and RNA2.7 mutant-infected cells showed that four upregulated transcripts were longer-lived in the presence of RNA2.7. These findings demonstrate that RNA2.7 is required for promoting cell movement and viral spread late in infection and suggest that this may be due to general stabilization of A+U-rich transcripts. IMPORTANCE In addition to messenger RNAs (mRNAs), the human genome encodes a large number of long non-coding RNAs (lncRNAs). Many lncRNAs that have been studied in detail are associated with broad modulation of gene expression and have important biological roles. Human cytomegalovirus, which is a large, clinically important DNA virus, specifies four lncRNAs, one of which (RNA2.7) is expressed at remarkably high levels during lytic infection. Our studies show that RNA2.7 is required for upregulating a large number of human genes, about 100 of which are associated with cell movement, and for promoting the movement of infected cells and the spread of virus from one cell to another. Further bioinformatic and experimental analyses indicated that RNA2.7 may exert these effects by stabilizing mRNAs that are relatively rich in A and U nucleotides. These findings increase our knowledge of how human cytomegalovirus regulates the infected cell to promote its own success.


2021 ◽  
Author(s):  
Zac Elmore ◽  
L Patrick Havlik ◽  
Daniel K Oh ◽  
Heather A Vincent ◽  
Aravind Asokan

Adeno-associated viruses (AAV) rely on helper viruses to transition from latency to lytic infection. Some recombinant AAV serotypes are secreted in a pre-lytic manner as extracellular vesicle (EV)-associated particles, although mechanisms underlying such are unknown. Here, we discover that the membrane-associated accessory protein (MAAP), expressed from a (+1) frameshifted open reading frame (ORF) in the AAV capsid (cap) gene, is a novel viral egress factor. MAAP contains a highly conserved, cationic amphipathic domain critical for AAV secretion. Wild type or recombinant AAV with a mutated MAAP start site (MAAPΔ) show markedly attenuated secretion and correspondingly, increased intracellular retention. Trans-complementation with recombinant MAAP restored extracellular secretion of multiple AAV/MAAPΔ serotypes. MAAP is sorted into recycling Rab11+ vesicles and strongly associates with EV markers upon fractionation. In addition to characterizing a novel viral egress factor, these studies highlight a prospective engineering platform to modulate secretion of AAV vectors or other EV-associated cargo.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Wu ◽  
Qiqi Yang ◽  
Mingshu Wang ◽  
Shun Chen ◽  
Renyong Jia ◽  
...  

Herpesviruses are extremely successful parasites that have evolved over millions of years to develop a variety of mechanisms to coexist with their hosts and to maintain host-to-host transmission and lifelong infection by regulating their life cycles. The life cycle of herpesviruses consists of two phases: lytic infection and latent infection. During lytic infection, active replication and the production of numerous progeny virions occur. Subsequent suppression of the host immune response leads to a lifetime latent infection of the host. During latent infection, the viral genome remains in an inactive state in the host cell to avoid host immune surveillance, but the virus can be reactivated and reenter the lytic cycle. The balance between these two phases of the herpesvirus life cycle is controlled by broad interactions among numerous viral and cellular factors. ICP22/ORF63 proteins are among these factors and are involved in transcription, nuclear budding, latency establishment, and reactivation. In this review, we summarized the various roles and complex mechanisms by which ICP22/ORF63 proteins regulate the life cycle of human herpesviruses and the complex relationships among host and viral factors. Elucidating the role and mechanism of ICP22/ORF63 in virus–host interactions will deepen our understanding of the viral life cycle. In addition, it will also help us to understand the pathogenesis of herpesvirus infections and provide new strategies for combating these infections.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009041
Author(s):  
Phillip Ziegler ◽  
Yarong Tian ◽  
Yulong Bai ◽  
Sanna Abrahamsson ◽  
Alan Bäckerholm ◽  
...  

Epstein-Barr virus (EBV) is a ubiquitous γ-herpesvirus with latent and lytic cycles. EBV replicates in the stratified epithelium but the nasopharynx is also composed of pseudostratified epithelium with distinct cell types. Latent infection is associated with nasopharyngeal carcinoma (NPC). Here, we show with nasopharyngeal conditionally reprogrammed cells cultured at the air-liquid interface that pseudostratified epithelial cells are susceptible to EBV infection. Donors varied in susceptibility to de novo EBV infection, but susceptible cultures also displayed differences with respect to pathogenesis. The cultures from one donor yielded lytic infection but cells from two other donors were positive for EBV-encoded EBERs and negative for other lytic infection markers. All cultures stained positive for the pseudostratified markers CK7, MUC5AC, α-tubulin in cilia, and the EBV epithelial cell receptor Ephrin receptor A2. To define EBV transcriptional programs by cell type and to elucidate latent/lytic infection-differential changes, we performed single cell RNA-sequencing on one EBV-infected culture that resulted in alignment with many EBV transcripts. EBV transcripts represented a small portion of the total transcriptome (~0.17%). All cell types in the pseudostratified epithelium had detectable EBV transcripts with suprabasal cells showing the highest number of reads aligning to many EBV genes. Several restriction factors (IRF1, MX1, STAT1, C18orf25) known to limit lytic infection were expressed at lower levels in the lytic subcluster. A third of the differentially-expressed genes in NPC tumors compared to an uninfected pseudostratified ALI culture overlapped with the differentially-expressed genes in the latent subcluster. A third of these commonly perturbed genes were specific to EBV infection and changed in the same direction. Collectively, these findings suggest that the pseudostratified epithelium could harbor EBV infection and that the pseudostratified infection model mirrors many of the transcriptional changes imposed by EBV infection in NPC.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009567
Author(s):  
Joseph M. Cabral ◽  
Camille H. Cushman ◽  
Catherine N. Sodroski ◽  
David M. Knipe

Histones are rapidly loaded on the HSV genome upon entry into the nucleus of human fibroblasts, but the effects of histone loading on viral replication have not been fully defined. We showed recently that ATRX is dispensable for de novo deposition of H3 to HSV genomes after nuclear entry but restricted infection through maintenance of viral heterochromatin. To further investigate the roles that ATRX and other histone H3 chaperones play in restriction of HSV, we infected human fibroblasts that were systematically depleted of nuclear H3 chaperones. We found that the ATRX/DAXX complex is unique among nuclear H3 chaperones in its capacity to restrict ICP0-null HSV infection. Only depletion of ATRX significantly alleviated restriction of viral replication. Interestingly, no individual nuclear H3 chaperone was required for deposition of H3 onto input viral genomes, suggesting that during lytic infection, H3 deposition may occur through multiple pathways. ChIP-seq for total histone H3 in control and ATRX-KO cells infected with ICP0-null HSV showed that HSV DNA is loaded with high levels of histones across the entire viral genome. Despite high levels of H3, ATAC-seq analysis revealed that HSV DNA is highly accessible, especially in regions of high GC content, and is not organized largely into ordered nucleosomes during lytic infection. ATRX reduced accessibility of viral DNA to the activity of a TN5 transposase and enhanced accumulation of viral DNA fragment sizes associated with nucleosome-like structures. Together, these findings support a model in which ATRX restricts viral infection by altering the structure of histone H3-loaded viral chromatin that reduces viral DNA accessibility for transcription. High GC rich regions of the HSV genome, especially the S component inverted repeats of the HSV-1 genome, show increased accessibility, which may lead to increased ability to transcribe the IE genes encoded in these regions during initiation of infection.


Sign in / Sign up

Export Citation Format

Share Document