scholarly journals Repression of Tax Expression Is Associated both with Resistance of Human T-Cell Leukemia Virus Type 1-Infected T Cells to Killing by Tax-Specific Cytotoxic T Lymphocytes and with Impaired Tumorigenicity in a Rat Model

2004 ◽  
Vol 78 (8) ◽  
pp. 3827-3836 ◽  
Author(s):  
Machiko Nomura ◽  
Takashi Ohashi ◽  
Keiko Nishikawa ◽  
Hironori Nishitsuji ◽  
Kiyoshi Kurihara ◽  
...  

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Although the viral transactivation factor, Tax, has been known to have apparent transforming ability, the exact function of Tax in ATL development is still not clear. To understand the role of Tax in ATL development, we introduced short-interfering RNAs (siRNAs) against Tax in a rat HTLV-1-infected T-cell line. Our results demonstrated that expression of siRNA targeting Tax successfully downregulated Tax expression. Repression of Tax expression was associated with resistance of the HTLV-1-infected T cells to Tax-specific cytotoxic-T-lymphocyte killing. This may be due to the direct effect of decreased Tax expression, because the Tax siRNA did not alter the expression of MHC-I, CD80, or CD86. Furthermore, T cells with Tax downregulation appeared to lose the ability to develop tumors in T-cell-deficient nude rats, in which the parental HTLV-1-infected cells induce ATL-like lymphoproliferative disease. These results indicated the importance of Tax both for activating host immune response against the virus and for maintaining the growth ability of infected cells in vivo. Our results provide insights into the mechanisms how the host immune system can survey and inhibit the growth of HTLV-1-infected cells during the long latent period before the onset of ATL.

2008 ◽  
Vol 82 (17) ◽  
pp. 8442-8455 ◽  
Author(s):  
Meihong Liu ◽  
Liangpeng Yang ◽  
Ling Zhang ◽  
Baoying Liu ◽  
Randall Merling ◽  
...  

ABSTRACT Infection by the human T-cell leukemia virus type 1 (HTLV-1) is thought to cause dysregulated T-cell proliferation, which in turn leads to adult T-cell leukemia/lymphoma. Early cellular changes after HTLV-1 infection have been difficult to study due to the poorly infectious nature of HTLV-1 and the need for cell-to-cell contact for HTLV-1 transmission. Using a series of reporter systems, we show that HeLa cells cease proliferation within one or two division cycles after infection by HTLV-1 or transduction of the HTLV-1 tax gene. HTLV-1-infected HeLa cells, like their tax-transduced counterparts, expressed high levels of p21 CIP1/WAF1 and p27 KIP1 , developed mitotic abnormalities, and became arrested in G1 in senescence. In contrast, cells of a human osteosarcoma lineage (HOS) continued to divide after HTLV-1 infection or Tax expression, albeit at a reduced growth rate and with mitotic aberrations. Unique to HOS cells is the dramatic reduction of p21 CIP1/WAF1 and p27 KIP1 expression, which is in part associated with the constitutive activation of the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) pathway. The loss of p21 CIP1/WAF1 and p27 KIP1 in HOS cells apparently allows HTLV-1- and Tax-induced G1 arrest to be bypassed. Finally, HTLV-1 infection and Tax expression also cause human SupT1 T cells to arrest in the G1 phase of the cell cycle. These results suggest that productive HTLV-1 infection ordinarily leads to Tax-mediated G1 arrest. However, T cells containing somatic mutations that inactivate p21 CIP1/WAF1 and p27 KIP1 may continue to proliferate after HTLV-1 infection and Tax expression. These infected cells can expand clonally, accumulate additional chromosomal abnormalities, and progress to cancer.


Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 1012-1016 ◽  
Author(s):  
Y Furukawa ◽  
J Fujisawa ◽  
M Osame ◽  
M Toita ◽  
S Sonoda ◽  
...  

Human T-cell leukemia virus type 1 (HTLV-1) integrates its proviruses into random sites in host chromosomal DNA. Random integration of the proviruses was observed in asymptomatic HTLV-1 carriers and patients with HTLV-1-associated myelopathy (HAM/TSP). However, clonal integration has been reported in patients with adult T-cell leukemia (ATL), including that in the smoldering, chronic, and acute states, indicating clonal expansion of infected cells. In this study, we found that about 20% of HAM/TSP patients and their seropositive family members harbored subpopulation(s) of clonally proliferated cells infected with HTLV-1, although they still maintained randomly infected cells as a major population. These clones were stable during examination periods of 4 months to 3 years. However, these carriers or HAM/TSP patients did not show any significant indication of ATL. This extremely high frequency of clonal expansion of HTLV-1-infected cells indicates that some clones of HTLV-1-infected cells have a tendency to proliferate more efficiently than the other population without malignant transformation.


Blood ◽  
2008 ◽  
Vol 112 (9) ◽  
pp. 3788-3797 ◽  
Author(s):  
Joshua Arnold ◽  
Bevin Zimmerman ◽  
Min Li ◽  
Michael D. Lairmore ◽  
Patrick L. Green

Human T-cell leukemia virus type 1 (HTLV-1) basic leucine zipper factor (HBZ) is dispensable for HTLV-1–mediated cellular transformation in cell culture, but is required for efficient viral infectivity and persistence in rabbits. In most adult T-cell leukemia (ATL) cells, Tax oncoprotein expression is typically low or undetectable, whereas Hbz gene expression is maintained, suggesting that Hbz expression may support infected cell survival and, ultimately, leukemogenesis. Emerging data indicate that HBZ protein can interact with cAMP response element binding protein (CREB) and Jun family members, altering transcription factor binding and transactivation of both viral and cellular promoters. Herein, lentiviral vectors that express Hbz-specific short hairpin (sh)–RNA effectively decreased both Hbz mRNA and HBZ protein expression in transduced HTLV-1–transformed SLB-1 T cells. Hbz knockdown correlated with a significant decrease in T-cell proliferation in culture. Both SLB-1 and SLB-1-Hbz knockdown cells engrafted into inoculated NOD/SCIDγchain−/− mice to form solid tumors that also infiltrated multiple tissues. However, tumor formation and organ infiltration were significantly decreased in animals challenged with SLB-1-Hbz knockdown cells. Our data indicate that Hbz expression enhances the proliferative capacity of HTLV-1–infected T cells, playing a critical role in cell survival and ultimately HTLV-1 tumorigenesis in the infected host.


Blood ◽  
2010 ◽  
Vol 116 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Micol Silic-Benussi ◽  
Ilaria Cavallari ◽  
Nicola Vajente ◽  
Silvia Vidali ◽  
Luigi Chieco-Bianchi ◽  
...  

AbstractThe present study investigated the function of p13, a mitochondrial protein of human T-cell leukemia virus type 1 (HTLV-1). Although necessary for viral propagation in vivo, the mechanism of function of p13 is incompletely understood. Drawing from studies in isolated mitochondria, we analyzed the effects of p13 on mitochondrial reactive oxygen species (ROS) in transformed and primary T cells. In transformed cells (Jurkat, HeLa), p13 did not affect ROS unless the cells were subjected to glucose deprivation, which led to a p13-dependent increase in ROS and cell death. Using RNA interference we confirmed that expression of p13 also influences glucose starvation-induced cell death in the context of HTLV-1–infected cells. ROS measurements showed an increasing gradient from resting to mitogen-activated primary T cells to transformed T cells (Jurkat). Expression of p13 in primary T cells resulted in their activation, an effect that was abrogated by ROS scavengers. These findings suggest that p13 may have a distinct impact on cell turnover depending on the inherent ROS levels; in the context of the HTLV-1 propagation strategy, p13 could increase the pool of “normal” infected cells while culling cells acquiring a transformed phenotype, thus favoring lifelong persistence of the virus in the host.


2007 ◽  
Vol 81 (11) ◽  
pp. 5908-5918 ◽  
Author(s):  
Ryo Takayanagi ◽  
Takashi Ohashi ◽  
Eizaburo Yamashita ◽  
Yohei Kurosaki ◽  
Kumiko Tanaka ◽  
...  

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia (ATL). To develop a better animal model for the investigation of HTLV-1 infection, we established a transgenic (Tg) rat carrying the human CRM1 (hCRM1) gene, which encodes a viral RNA transporter that is a species-specific restriction factor. At first we found that CRM1 expression is elaborately regulated through a pathway involving protein kinase C during lymphocyte activation, initially by posttranscriptional and subsequently by transcriptional mechanisms. This fact led us to use an hCRM1-containing bacterial artificial chromosome clone, which would harbor the entire regulatory and coding regions of the CRM1 gene. The Tg rats expressed hCRM1 protein in a manner similar to expression of intrinsic rat CRM1 in various organs. HTLV-1-infected T-cell lines derived from these Tg rats produced 100- to 10,000-fold more HTLV-1 than did T cells from wild-type rats, and the absolute levels of HTLV-1 were similar to those produced by human T cells. We also observed enhancement of the dissemination of HTLV-1 to the thymus in the Tg rats after intraperitoneal inoculation, although the proviral loads were low in both wild-type and Tg rats. These results support the essential role of hCRM1 in proper HTLV-1 replication and suggest the importance of this Tg rat as an animal model for HTLV-1.


Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 1012-1016 ◽  
Author(s):  
Y Furukawa ◽  
J Fujisawa ◽  
M Osame ◽  
M Toita ◽  
S Sonoda ◽  
...  

Abstract Human T-cell leukemia virus type 1 (HTLV-1) integrates its proviruses into random sites in host chromosomal DNA. Random integration of the proviruses was observed in asymptomatic HTLV-1 carriers and patients with HTLV-1-associated myelopathy (HAM/TSP). However, clonal integration has been reported in patients with adult T-cell leukemia (ATL), including that in the smoldering, chronic, and acute states, indicating clonal expansion of infected cells. In this study, we found that about 20% of HAM/TSP patients and their seropositive family members harbored subpopulation(s) of clonally proliferated cells infected with HTLV-1, although they still maintained randomly infected cells as a major population. These clones were stable during examination periods of 4 months to 3 years. However, these carriers or HAM/TSP patients did not show any significant indication of ATL. This extremely high frequency of clonal expansion of HTLV-1-infected cells indicates that some clones of HTLV-1-infected cells have a tendency to proliferate more efficiently than the other population without malignant transformation.


2008 ◽  
Vol 82 (19) ◽  
pp. 9359-9368 ◽  
Author(s):  
Mika Yoshida ◽  
Yorifumi Satou ◽  
Jun-ichirou Yasunaga ◽  
Jun-ichi Fujisawa ◽  
Masao Matsuoka

ABSTRACT The human T-cell leukemia virus type 1 (HTLV-1) basic leucine zipper factor (HBZ) gene is encoded by the minus strand of the HTLV-1 provirus and transcribed from the 3′ long terminal repeat (LTR). HBZ gene expression not only inhibits the Tax-mediated activation of viral gene transcription through the 5′ LTR but also promotes the proliferation of infected cells. However, the HBZ promoter region and the transcriptional regulation of the gene have not been studied. In this study, we characterize the promoters of the spliced version of the HBZ gene (sHBZ) and the unspliced version of the HBZ gene (usHBZ) by luciferase assay. Both promoters were TATA-less and contained initiators and downstream promoter elements. Detailed studies of the promoter for the sHBZ gene showed that Sp1 sites were critical for its activity. The activities of the sHBZ and usHBZ gene promoters were upregulated by Tax through Tax-responsible elements in the 3′ LTR. We compared the functions of the proteins derived from the sHBZ and usHBZ transcripts. sHBZ showed a stronger suppression of Tax-mediated transcriptional activation through the 5′ LTR than did usHBZ; the level of suppression correlated with the level of protein produced. The expression of sHBZ had a growth-promoting function in a T-cell line, while usHBZ expression did not. This study demonstrates that Sp1 is critical for sHBZ transcription, which accounts for the constitutive expression of the sHBZ gene. Functional differences between sHBZ and usHBZ suggest that the sHBZ gene plays a significant role in the proliferation of infected cells.


1999 ◽  
Vol 73 (12) ◽  
pp. 9917-9927 ◽  
Author(s):  
Francisco Santiago ◽  
Elizabeth Clark ◽  
Siewyen Chong ◽  
Carlos Molina ◽  
Fariba Mozafari ◽  
...  

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent for adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis. Tax1 is a 40-kDa phosphoprotein, predominantly localized in the nucleus of the host cell, which functions to transactivate both viral and cellular promoters. It seems likely that HTLV-1, through expression of the viral regulatory protein Tax1, provides some initial alteration in cell metabolism predisposing the development of ATL. Here, we demonstrate that HTLV-1 infection in T-cell lines and patient samples causes overexpression of an early G1 cyclin, cyclin D2. The transcriptional up-regulation of the cyclin D2 gene is due to activation of Tax on the cyclin D2 gene. More important, we find that overexpression of cyclin D2 is accompanied by acquisition of new partners such as cyclin-dependent kinase 2 (cdk2), cdk4, and cdk6 in infected cells. This is in contrast to uninfected T cells, where cyclin D2 associates only with cdk6. Functional effects of these cyclin-cdk complexes in infected cells are shown by hyperphosphorylation of Rb and histone H1, indicators of active progression into S phase as well as changes in cellular chromatin and transcription machinery. These studies link HTLV-1 infection with changes of cellular cyclin gene expression, hence providing clues to development of T-cell leukemia.


2005 ◽  
Vol 79 (23) ◽  
pp. 14473-14481 ◽  
Author(s):  
Ihab Younis ◽  
Brenda Yamamoto ◽  
Andrew Phipps ◽  
Patrick L. Green

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus associated primarily with adult T-cell leukemia and neurological disease. HTLV-1 encodes the positive trans-regulatory proteins Tax and Rex, both of which are essential for viral replication. Tax activates transcription initiation from the viral long terminal repeat and modulates the transcription or activity of a number of cellular genes. Rex regulates gene expression posttranscriptionally by facilitating the cytoplasmic expression of incompletely spliced viral mRNAs. Tax and Rex mutants have been identified that have defective activities or impaired biochemical properties associated with their function. To ultimately determine the contribution of specific protein activities on viral replication and cellular transformation of primary T cells, mutants need to be characterized in the context of an infectious molecular clone. Since the tax and rex genes are in partially overlapping reading frames, mutation in one gene frequently disrupts the other, confounding interpretation of mutational analyses in the context of the virus. Here we generated and characterized a unique proviral clone (H1IT) in which the tax and rex genes were separated by expressing Tax from an internal ribosome entry site. We showed that H1IT expresses both functional Tax and Rex. In short- and long-term coculture assays, H1IT was competent to infect and immortalize primary human T cells similar to wild-type HTLV-1. In contrast, H1IT failed to efficiently replicate and persist in inoculated rabbits, thus emphasizing the importance of temporal and quantitative regulation of specific mRNA for viral survival in vivo.


Sign in / Sign up

Export Citation Format

Share Document