scholarly journals Recombinant Human Immunodeficiency Virus Type 1 Integrase Exhibits a Capacity for Full-Site Integration In Vitro That Is Comparable to That of Purified Preintegration Complexes from Virus-Infected Cells

2005 ◽  
Vol 79 (13) ◽  
pp. 8208-8216 ◽  
Author(s):  
Sapna Sinha ◽  
Duane P. Grandgenett

ABSTRACT Retrovirus preintegration complexes (PIC) in virus-infected cells contain the linear viral DNA genome (∼10 kbp), viral proteins including integrase (IN), and cellular proteins. After transport of the PIC into the nucleus, IN catalyzes the concerted insertion of the two viral DNA ends into the host chromosome. This successful insertion process is termed “full-site integration.” Reconstitution of nucleoprotein complexes using recombinant human immunodeficiency virus type 1 (HIV-1) IN and model viral DNA donor substrates (∼0.30 to 0.48 kbp in length) that are capable of catalyzing efficient full-site integration has proven difficult. Many of the products are half-site integration reactions where either IN inserts only one end of the viral donor substrate into a circular DNA target or into other donors. In this report, we have purified recombinant HIV-1 IN at pH 6.8 in the presence of MgSO4 that performed full-site integration nearly as efficiently as HIV-1 PIC. The size of the viral DNA substrate was significantly increased to 4.1 kbp, thus allowing for the number of viral DNA ends and the concentrations of IN in the reaction mixtures to be decreased by a factor of ∼10. In a typical reaction at 37°C, recombinant HIV-1 IN at 5 to 10 nM incorporated 30 to 40% of the input DNA donor into full-site integration products. The synthesis of full-site products continued up to ∼2 h, comparable to incubation times used with HIV-1 PIC. Approximately 5% of the input donor was incorporated into the circular target producing half-site products with no significant quantities of other integration products produced. DNA sequence analysis of the viral DNA-target junctions derived from wild-type U3 and U5 coupled reactions showed an ∼70% fidelity for the HIV-1 5-bp host site duplications. Recombinant HIV-1 IN successfully utilized a mutant U5 end containing additional nucleotide extensions for full-site integration demonstrating that IN worked properly under nonideal active substrate conditions. The fidelity of the 5-bp host site duplications was also high with these coupled mutant U5 and wild-type U3 donor ends. These studies suggest that recombinant HIV-1 IN is at least as capable as native IN in virus particles and approaching that observed with HIV-1 PIC for catalyzing full-site integration.

2007 ◽  
Vol 81 (22) ◽  
pp. 12189-12199 ◽  
Author(s):  
Krishan K. Pandey ◽  
Sibes Bera ◽  
Jacob Zahm ◽  
Ajaykumar Vora ◽  
Kara Stillmock ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) integrase (IN) inserts the viral DNA genome into host chromosomes. Here, by native agarose gel electrophoresis, using recombinant IN with a blunt-ended viral DNA substrate, we identified the synaptic complex (SC), a transient early intermediate in the integration pathway. The SC consists of two donor ends juxtaposed by IN noncovalently. The DNA ends within the SC were minimally processed (∼15%). In a time-dependent manner, the SC associated with target DNA and progressed to the strand transfer complex (STC), the nucleoprotein product of concerted integration. In the STC, the two viral DNA ends are covalently attached to target and remain associated with IN. The diketo acid inhibitors and their analogs effectively inhibit HIV-1 replication by preventing integration in vivo. Strand transfer inhibitors L-870,810, L-870,812, and L-841,411, at low nM concentrations, effectively inhibited the concerted integration of viral DNA donor in vitro. The inhibitors, in a concentration-dependent manner, bound to IN within the SC and thereby blocked the docking onto target DNA, which thus prevented the formation of the STC. Although 3′-OH recessed donor efficiently formed the STC, reactions proceeding with this substrate exhibited marked resistance to the presence of inhibitor, requiring significantly higher concentrations for effective inhibition of all strand transfer products. These results suggest that binding of inhibitor to the SC occurs prior to, during, or immediately after 3′-OH processing. It follows that the IN-viral DNA complex is “trapped” by the strand transfer inhibitors via a transient intermediate within the cytoplasmic preintegration complex.


1990 ◽  
Vol 172 (4) ◽  
pp. 1035-1042 ◽  
Author(s):  
C D Pauza ◽  
J E Galindo ◽  
D D Richman

High levels of unintegrated viral DNA accumulate during human immunodeficiency virus type 1 (HIV-1) infection of CEM T cells. Reinfection of already infected cells is required to attain these levels and reinfection also promotes the development of HIV-induced cytopathology. Rates of virus production, however, are independent of the accumulation of unintegrated viral DNA. Neutralizing antibody added soon after infection reduced viral DNA levels without appreciably affecting the production of cell-free viral p24 antigen or reverse transcriptase activity. Only 50 pM AZT were required to reduce the accumulation of unintegrated viral DNA by 50% in contrast to the 25 nM required to inhibit virus production by 50%. Cytopathology, as measured by number of syncytia in infected cell cultures, was correlated with highly elevated levels of unintegrated viral DNA. The minimal levels of unintegrated viral DNA present constitutively in the persistently infected HCEM cell line were consonant with the absence of cytopathic effects in these cells. These data demonstrate that inhibiting the reinfection of already infected cells modulates cytopathic HIV-1 infection to a form that is persistent and noncytopathic.


2006 ◽  
Vol 80 (8) ◽  
pp. 3712-3720 ◽  
Author(s):  
David J. Dismuke ◽  
Christopher Aiken

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) particles begin their replication upon fusion with the plasma membrane of target cells and release of the viral core into the host cell cytoplasm. Soon thereafter, the viral capsid, which is composed of a polymer of the CA protein, disassociates from the internal ribonucleoprotein complex. While this disassembly process remains poorly understood, the available evidence indicates that proper uncoating of the core is a key step in infection. Defects in uncoating most often lead to a failure of the virus to undergo reverse transcription, resulting in an inability to form a functional viral preintegration complex (PIC). In a previous study, we reported that an HIV-1 mutant containing two substitutions in CA (Q63A/67A) was unusual in that it was poorly infectious yet synthesized normal levels of viral DNA. Here we report that this mutant is impaired for nuclear entry. Quantitative analysis of viral DNA synthesis from infected cells by Southern blotting and real-time PCR revealed that the Q63A/Q67A mutant is impaired in the synthesis of one-long terminal repeat (1-LTR) and 2-LTR circles. Isolation of PICs from acutely infected cells revealed that the Q63A/Q67A mutant produces protein-DNA complexes similar to wild-type in yield and overall composition, but these PICs contained elevated levels of CA and were impaired for integration in vitro. These results demonstrate that mutations in CA can have deleterious effects on both nuclear targeting and integration, suggesting that these steps in the HIV-1 life cycle are dependent on proper uncoating of the viral core.


2001 ◽  
Vol 75 (20) ◽  
pp. 9753-9761 ◽  
Author(s):  
Jing-Yuan Fang ◽  
Judy A. Mikovits ◽  
Rachel Bagni ◽  
Cari L. Petrow-Sadowski ◽  
Francis W. Ruscetti

ABSTRACT DNA methylation, by regulating the transcription of genes, is a major modifier of the eukaryotic genome. DNA methyltransferases (DNMTs) are responsible for both maintenance and de novo methylation. We have reported that human immunodeficiency virus type 1 (HIV-1) infection increases DNMT1 expression and de novo methylation of genes such as the gamma interferon gene in CD4+ cells. Here, we examined the mechanism(s) by which HIV-1 infection increases the cellular capacity to methylate genes. While the RNAs and proteins of all three DNMTs (1, 3a, and 3b) were detected in Hut 78 lymphoid cells, only the expression of DNMT1 was significantly increased 3 to 5 days postinfection. This increase was observed with either wild-type HIV-1 or an integrase (IN) mutant, which renders HIV replication defective, due to the inability of the provirus to integrate into the host genome. Unintegrated viral DNA is a common feature of many retroviral infections and is thought to play a role in pathogenesis. These results indicate another mechanism by which unintegrated viral DNA affects the host. In addition to the increase in overall genomic methylation, hypermethylation and reduced expression of thep16 INK4A gene, one of the most commonly altered genes in human cancer, were seen in cells infected with both wild-type and IN-defective HIV-1. Thus, infection of lymphoid cells with integration-defective HIV-1 can increase the methylation of CpG islands in the promoters of genes such as thep16 INK4A gene, silencing their expression.


2001 ◽  
Vol 75 (16) ◽  
pp. 7683-7691 ◽  
Author(s):  
Peter Bell ◽  
Luis J. Montaner ◽  
Gerd G. Maul

ABSTRACT The RNA genome of human immunodeficiency virus type 1 (HIV-1) is converted into DNA after infection in order to integrate into the host cell DNA. However, a large number of these reverse-transcribed genomes remain unintegrated in the nucleus of infected cells. Currently, there are no data available about the intranuclear distribution pattern of unintegrated HIV-1 DNA in relation to nuclear structures as observed on the single-cell level. In the present study, we investigated the intranuclear fate of unintegrated viral DNA in cell lines expressing CD4 and coreceptors (HOS-CD4.CCR5 and U373-MAGI-CXCR4CEM) infected with HIV-1 (strain 89.6). We used a novel approach to distinguish in situ unintegrated from integrated viral DNA by performing fluorescent in situ hybridization on cells in which stress-induced chromosome condensation had been induced, a procedure that contracts chromosomes independent of the cell cycle. Cells infected for 15 h accumulated large amounts of HIV-1 DNA which was located between the condensed chromosome strands, allowing the identification of this viral DNA as unintegrated. In contrast, in HeLa/LAV, a cell line carrying integrated HIV-1 genomes, the great majority of viral DNA colocalized with the cellular DNA. We show that unintegrated HIV-1 DNA does not evenly distribute within the host cell nucleus but tends to aggregate into clusters containing many copies of the viral genomes. The formation of these DNA clusters was independent of viral DNA replication and thus appeared to result solely from multiple infections. The DNA aggregates remained in the nuclei of infected cells for at least 25 h after the infection was stopped. The emergence of transcription sites, which most likely denote sites of the integrated provirus, lagged clearly behind the accumulation of viral DNA. These transcription foci could not be linked to unintegrated DNA molecules, suggesting that this DNA type is unable to transcribe, at least at levels comparable to those of integrated DNA. Neither unintegrated HIV-1 DNA nor transcription foci nor integrated DNA was observed to associate with nuclear domain 10 (ND10), a nuclear structure known to represent the site where several DNA viruses replicate and transcribe. Also, HIV-1 does not modify ND10 at early or late times of infection. There was no specific association of HIV-1 transcripts with splicing factor SC35 domains, in contrast to what has been reported for a number of both cellular and viral genes. Surprisingly, unintegrated HIV-1 DNA was found to accumulate within or in close association with SC35 domains, demonstrating a specific distribution of the viral DNA within the host cell nucleus. Taken together, our results demonstrate that unintegrated proviral HIV-1 DNA does not randomly localize within infected cells but preferentially aggregates in the nucleus within SC35 domains.


1999 ◽  
Vol 73 (8) ◽  
pp. 6700-6707 ◽  
Author(s):  
Yudong Quan ◽  
Liwei Rong ◽  
Chen Liang ◽  
Mark A. Wainberg

ABSTRACT We have recently reported that the in vitro inhibition of human immunodeficiency virus type 1 (HIV-1) reverse transcription by inhibitors of reverse transcriptase (RT) occurred most efficiently when the expected DNA products of RT reactions were long (Quan et al., Nucleic Acids Res. 26:5692–5698, 1998). Here, we have used a quantitative PCR to analyze HIV-1 reverse transcription within acutely infected cells treated with RT inhibitors. We found that levels of minus-strand strong-stop DNA [(−)ssDNA] formed in acutely infected MT2 cells were only slightly reduced if cells were infected with viruses that had been generated in the presence of either azidothymidine or nevirapine (5 μM) and maintained in the presence of this drug throughout the viral adsorption period and thereafter. Control experiments in which virus inoculation of cells was performed at 4°C, followed directly by cell extraction, showed that less than 1% of total (−)ssDNA within acutely infected cells was attributable to its presence within adsorbed virions. In contrast, synthesis of intermediate-length reverse-transcribed DNA products decreased gradually as viral DNA strand elongation took place in the presence of either of these inhibitors. This establishes that nucleoside and nonnucleoside RT inhibitors can exert similar temporal impacts in regard to inhibition of viral DNA synthesis. Generation of full-length viral DNA, as expected, was almost completely blocked in the presence of these antiviral drugs. These results provide insight into the fact that high concentrations of drugs are often needed to yield inhibitory effects in cell-free RT assays performed with short templates, whereas relatively low drug concentrations are often strongly inhibitory in cellular systems.


1998 ◽  
Vol 72 (10) ◽  
pp. 8396-8402 ◽  
Author(s):  
Takao Masuda ◽  
Marcelo J. Kuroda ◽  
Shinji Harada

ABSTRACT The retroviral attachment (att) sites at viral DNA ends are cis-acting regions essential for proviral integration. To investigate the sequence features of att important for human immunodeficiency virus type 1 (HIV-1) integration in vivo, we generated a series of 25 att mutants of HIV-1 by mutagenesis of the U3, U5, or both boundaries of att. Our results indicated that the terminal 11 or 12 bp of viral DNA are sufficient for specific recognition by HIV-1 integrase (IN) and suggested that IN might recognize each att site independently in vivo.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1798
Author(s):  
Grant R. Campbell ◽  
Stephen A. Spector

Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.


2001 ◽  
Vol 75 (17) ◽  
pp. 7925-7933 ◽  
Author(s):  
Mario Canki ◽  
Janice Ngee Foong Thai ◽  
Wei Chao ◽  
Anuja Ghorpade ◽  
Mary Jane Potash ◽  
...  

ABSTRACT Human astrocytes can be infected with human immunodeficiency virus type 1 (HIV-1) in vitro and in vivo, but, in contrast to T lymphocytes and macrophages, virus expression is inefficient. To investigate the HIV-1 life cycle in human fetal astrocytes, we infected cells with HIV-1 pseudotyped with envelope glycoproteins of either amphotropic murine leukemia virus or vesicular stomatitis virus. Infection by both pseudotypes was productive and long lasting and reached a peak of 68% infected cells and 1.7 μg of viral p24 per ml of culture supernatant 7 days after virus inoculation and then continued with gradually declining levels of virus expression through 7 weeks of follow-up. This contrasted with less than 0.1% HIV-1 antigen-positive cells and 400 pg of extracellular p24 per ml at the peak of astrocyte infection with native HIV-1. Cell viability and growth kinetics were similar in infected and control cells. Northern blot analysis revealed the presence of major HIV-1 RNA species of 9, 4, and 2 kb in astrocytes exposed to pseudotyped (but not wild-type) HIV-1 at 2, 14, and 28 days after infection. Consistent with productive infection, the 9- and 4-kb viral transcripts in astrocytes infected by pseudotyped HIV-1 were as abundant as the 2-kb mRNA during 4 weeks of follow-up, and both structural and regulatory viral proteins were detected in infected cells by immunoblotting or cell staining. The progeny virus released by these cells was infectious. These results indicate that the major barrier to HIV-1 infection of primary astrocytes is at virus entry and that astrocytes have no intrinsic intracellular restriction to efficient HIV-1 replication.


2007 ◽  
Vol 82 (1) ◽  
pp. 138-147 ◽  
Author(s):  
Mamoru Fujiwara ◽  
Junko Tanuma ◽  
Hirokazu Koizumi ◽  
Yuka Kawashima ◽  
Kazutaka Honda ◽  
...  

ABSTRACT There is much evidence that in human immunodeficiency virus type 1 (HIV-1)-infected individuals, strong cytotoxic T lymphocyte (CTL)-mediated immune pressure results in the selection of HIV-1 mutants that have escaped from wild-type-specific CTLs. If escape mutant-specific CTLs are not elicited in new hosts sharing donor HLA molecules, the transmission of these mutants results in the accumulation of escape mutants in the population. However, whether escape mutant-specific CTLs are definitively not elicited in new hosts sharing donor HLA molecules still remains unclear. A previous study showed that a Y-to-F substitution at the second position (2F) of the Nef138-10 epitope is significantly detected in HLA-A*2402+ hemophilic donors. Presently, we confirmed that this 2F mutant was an escape mutant by demonstrating strong and weak abilities of Nef138-10-specific CTL clones to suppress replication of the wild-type and 2F mutant viruses, respectively. We demonstrated the existence of the 2F-specific CTLs in three new hosts who had been primarily infected with the 2F mutant. The 2F-specific CTL clones suppressed the replication of both wild-type and mutant viruses. However, the abilities of these clones to suppress replication of the 2F virus were much weaker than those of wild-type-specific and the 2F-specific ones to suppress replication of the wild-type virus. These findings indicate that the 2F mutant is conserved in HIV-1-infected donors having HLA-A*2402, because the 2F-specific CTLs failed to completely suppress the 2F mutant replication and effectively prevented viral reversion in new hosts carrying HLA-A*2402.


Sign in / Sign up

Export Citation Format

Share Document