lymphoid cells
Recently Published Documents


TOTAL DOCUMENTS

6317
(FIVE YEARS 1301)

H-INDEX

182
(FIVE YEARS 22)

2022 ◽  
Vol 3 (1) ◽  
pp. 01-05
Author(s):  
Nightingale Syabbalo

Asthma is a heterogeneous chronic airway disease comprising of distinct phenotypes characterized by different immunopathophysiologic pathways, clinical features, disease severity, and response to treatment. The phenotypes of asthma include eosinophilic, neutrophilic, mixed cellularity, and paucigranulocytic asthma. Eosinophilic asthma is principally a T helper type 2 (Th2)-mediated airway disease. However, several other immune and structural cells secrete the cytokines implicated in the pathogenesis of eosinophilic asthma. Innate type 2 lymphoid cells, mast cells, basophils, and eosinophils secrete Th2 cytokines, such as interleukin-4 (IL-4), IL-13, and IL-5. Additionally, airway epithelial cells produce alarmin cytokines, including IL-25, IL-33, and thymic stromal lymphopoietin (TSLP). Alarmins are the key initiators of allergic inflammation at the sentinel mucosal surfaces. Innovative biotherapeutic research has led to the discovery of monoclonal antibodies which target and inhibit the immunopathological effects of the cytokines involved in the pathogenesis of eosinophilic asthma. Parenteral biologics targeting the inciting interleukins, include mepolizumab and reslizumab (anti-IL-5), benralizumab (anti-IL-5Rα), dupilumab (anti-4Rα), and tezelizumab (anti-TSLP). They have been shown to significantly reduce annualized exacerbation rates, improve asthma control, lung function, and quality of life. Currently, there are no pulmonary delivered aerosol biologics for topical treatment of asthma. CSJ117 is a potent neutralizing antibody Fab fragment against TSLP, formulated as a PulmoSol TM engineered powder, and is delivered to the lungs by a dry powder inhaler. Phase 2 placebo-controlled clinical trial evaluated the efficacy and safety of CSJ117. CSJ117 delivered as an inhaler attenuated the late asthmatic response (LAR), and the early asthmatic response (EAR) after allergen inhalation challenge (AIC) at day 84 of treatment. The maximum decrease in FVE1 from pre-AIC were significantly lower in the CSJ117 group compared to placebo (P = 029), during LAR. CSJ117 also significantly reduced fractional exhaled nitric oxide before AIC at day 83; and significantly reduced the allergen-induced increase in % sputum eosinophil count. Pulmonary delivery of biologics directly to the airway mucosal surface has several advantages over parenteral routes, particularly in treating airway diseases such as asthma. Inhaler delivered biologics, such as CSJ117 are innovative and attractive methods of future precision treatment of asthma, and other respiratory diseases.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sina Fuchs ◽  
Andrea Scheffschick ◽  
Iva Gunnarsson ◽  
Hanna Brauner

Anti-neutrophil cytoplasmic antibody (ANCA)- associated vasculitis (AAV) is a group of systemic autoimmune diseases characterized by inflammation of small- and medium-sized vessels. The three main types of AAV are granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA). A growing number of studies focus on natural killer (NK) cells in AAV. NK cells are innate lymphoid cells with important roles in anti-viral and anti-tumor defense, but their roles in the pathogenesis of autoimmunity is less well established. In this review, we will present a summary of what is known about the number, phenotype and function of NK cells in patients with AAV. We review the literature on NK cells in the circulation of AAV patients, studies on tissue resident NK cells and how the treatment affects NK cells.


2022 ◽  
Vol 11 (2) ◽  
pp. 400
Author(s):  
Aleksandra Kałużna ◽  
Paweł Olczyk ◽  
Katarzyna Komosińska-Vassev

Ulcerative colitis (UC) is a chronic inflammatory disease with an underlying excessive immune response directed against resident microbiota and/or dietary antigens. Both innate and adaptive immune cells play a crucial role in the pathogenesis of UC. In the case of innate immune response cells, neutrophils, dendritic cells, macrophages have a crucial impact on the development of the disease, as well as innate lymphoid cells, which have received a particular attention in recent years. On the other hand, mechanisms of the adaptive immune response involve cells such as: cytotoxic lymphocytes, regulatory lymphocytes Treg, or helper lymphocytes Th–Th2, Th9, Th17, Th22, among which significant discoveries about Th9 and Th17 lymphocytes have been made in recent years. Due to the presence of antibodies directed against resident microbiota or one’s own tissues, the influence of B lymphocytes on the development of UC is also highlighted. Additionally, the impact of cytokines on shaping the immune response as well as sustaining inflammation seems to be crucial. This review briefly describes the current state of knowledge about the involvement of the innate and adaptive immune systems in the pathogenesis of UC. The review is based on personal selection of literature that were retrieved by a selective search in PubMed using the terms “ulcerative colitis” and “pathogenesis of ulcerative colitis”. It included systematic reviews, meta-analyses and clinical trials. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents.


2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Ewelina Krzywinska ◽  
Michal Sobecki ◽  
Shunmugam Nagarajan ◽  
Julian Zacharjasz ◽  
Murtaza M. Tambuwala ◽  
...  

Gut innate lymphoid cells (ILCs) show remarkable phenotypic diversity, yet microenvironmental factors that drive this plasticity are incompletely understood. The balance between NKp46+, IL-22–producing, group 3 ILCs (ILC3s) and interferon (IFN)-γ–producing group 1 ILCs (ILC1s) contributes to gut homeostasis. The gut mucosa is characterized by physiological hypoxia, and adaptation to low oxygen is mediated by hypoxia-inducible transcription factors (HIFs). However, the impact of HIFs on ILC phenotype and gut homeostasis is not well understood. Mice lacking the HIF-1α isoform in NKp46+ ILCs show a decrease in IFN-γ–expressing, T-bet+, NKp46+ ILC1s and a concomitant increase in IL-22–expressing, RORγt+, NKp46+ ILC3s in the gut mucosa. Single-cell RNA sequencing revealed HIF-1α as a driver of ILC phenotypes, where HIF-1α promotes the ILC1 phenotype by direct up-regulation of T-bet. Loss of HIF-1α in NKp46+ cells prevents ILC3-to-ILC1 conversion, increases the expression of IL-22–inducible genes, and confers protection against intestinal damage. Taken together, our results suggest that HIF-1α shapes the ILC phenotype in the gut.


Author(s):  
Sumana Kunmongkolwut ◽  
Chatchawan Amornkarnjanawat ◽  
Ekarat Phattarataratip

AbstractEpstein–Barr virus (EBV)-positive mucocutaneous ulcer (EBVMCU) is a unique clinicopathologic entity of lymphoproliferative disorder, occurring in immunosuppressed patients. Due to its rarity, EBVMCU may be under-recognized by clinicians as well as pathologists. In addition, its clinical and histopathologic features overlap with other benign and malignant conditions, making a diagnosis challenging. This report presents an unusual case of multifocal oral EBVMCUs in a 52-year-old female patient with rheumatoid arthritis, receiving the combination of methotrexate and leflunomide for 5 years. The patient presented with persistent multiple large painful ulcers involving her palate and gingiva for 6 months. The histopathologic examination revealed extensive ulceration with diffuse polymorphic inflammatory infiltrate admixed with scattered atypical lymphoid cells showing occasional Hodgkin and Reed/Sternberg-like cell features. These atypical cells showed immunoreactivity for CD20, CD30 and MUM1/IRF4. EBV-encoded small RNA in situ hybridization was positive, validating the presence of EBV-infected cells. Two months after discontinuation of both immunosuppressive medications, oral lesions gradually regressed. At 9-month follow-up, no evidence of relapsing oral EBVMCU has been observed. The multifocal presentation of EBVMCU is rare and could be resulted from the overwhelming immune suppression by long-term use of dual immunosuppressants. Its diagnosis requires comprehensive correlation of patient history, clinical findings, histopathologic, and immunophenotypic features. The ability of EBVMCU to regress following removal of immunosuppressive causes is in drastic contrast to a variety of its potential clinical and histopathologic mimics. Therefore, accurate diagnosis is crucial to avoid unnecessary patient management and achieve optimal patient outcomes.


2022 ◽  
Author(s):  
Jayne E Wiarda ◽  
Julian M Trachsel ◽  
Sathesh K Sivasankaran ◽  
Christopher K Tuggle ◽  
Crystal L Loving

Intestinal lymphocytes are crucial members of the mucosal immune system with impact over outcomes of intestinal health versus dysbiosis. Resolving intestinal lymphocyte complexity and function is a challenge, as the intestine provides cellular snapshots of a diverse spectrum of immune states. In pigs, intestinal lymphocytes are poorly described relative to humans or traditional model species. Enhanced understanding of porcine intestinal lymphocytes will promote food security and improve utility of pigs as a biomedical model for intestinal research. Single-cell RNA sequencing (scRNA-seq) was performed to provide transcriptomic profiles of lymphocytes in the porcine ileum, with 31,983 cells annotated into 26 cell types. Deeper interrogation revealed previously undescribed cells in porcine ileum, including SELLhi γδ T cells, group 1 and group 3 innate lymphoid cells (ILCs), and four subsets of B cells. Single-cell transcriptomes in ileum were compared to those in porcine blood, and subsets of activated lymphocytes were detected in ileum but not periphery. Comparison to scRNA-seq human and murine ileum data revealed a general consensus of ileal lymphocytes across species. Lymphocyte spatial context in porcine ileum was conferred through differential tissue dissection prior to scRNA-seq. Antibody-secreting cells, B cells, follicular αβ T cells, and cycling T/ILCs were enriched in ileum with Peyer's patches, while non-cycling γδ T, CD8 αβ T, and group 1 ILCs were enriched in ileum without Peyer's patches. scRNA-seq findings were leverages to develop advanced toolsets for further identification of ILCs in porcine ileum via flow cytometry and in situ staining. Porcine ileal ILCs identified via scRNA-seq did not transcriptionally mirror peripheral ILCs (corresponding to natural killer cells) but instead had gene signatures indicative of tissue- and activation-specific functions, indicating potentially similar roles to intestinal ILCs identified in humans. Overall, the data serve as a highly-resolved transcriptomic atlas of the porcine intestinal immune landscape and will be useful in further understanding intestinal immune cell function.


2022 ◽  
Vol 11 (2) ◽  
pp. 322
Author(s):  
Rabea Asleh ◽  
Darko Vucicevic ◽  
Tanya M. Petterson ◽  
Walter K. Kremers ◽  
Naveen L. Pereira ◽  
...  

Mammalian target of rapamycin (mTOR) inhibitors have been shown to reduce proliferation of lymphoid cells; thus, their use for immunosuppression after heart transplantation (HT) may reduce post-transplant lymphoproliferative disorder (PTLD) risk. This study sought to investigate whether the sirolimus (SRL)-based immunosuppression regimen is associated with a decreased risk of PTLD compared with the calcineurin inhibitor (CNI)-based regimen in HT recipients. We retrospectively analyzed 590 patients who received HTs at two large institutions between 1 June 1988 and 31 December 2014. Cox proportional-hazard modeling was used to examine the association between type of primary immunosuppression and PTLD after adjustment for potential confounders, including Epstein–Barr virus (EBV) status, type of induction therapy, and rejection. Conversion from CNI to SRL as primary immunosuppression occurred in 249 patients (42.2%). During a median follow-up of 6.3 years, 30 patients developed PTLD (5.1%). In a univariate analysis, EBV mismatch was strongly associated with increased risk of PTLD (HR 10.0, 95% CI: 3.8–26.6; p < 0.001), and conversion to SRL was found to be protective against development of PTLD (HR 0.19, 95% CI: 0.04–0.80; p = 0.02). In a multivariable model and after adjusting for EBV mismatch, conversion to SRL remained protective against risk of PTLD compared with continued CNI use (HR 0.12, 95% CI: 0.03–0.55; p = 0.006). In conclusion, SRL-based immunosuppression is associated with lower incidence of PTLD after HT. These findings provide evidence of a benefit from conversion to SRL as maintenance therapy for mitigating the risk of PTLD, particularly among patients at high PTLD risk.


Sign in / Sign up

Export Citation Format

Share Document