scholarly journals Human Immunodeficiency Virus Type 1 Clade B Superinfection: Evidence for Differential Immune Containment of Distinct Clade B Strains

2005 ◽  
Vol 79 (2) ◽  
pp. 860-868 ◽  
Author(s):  
Otto O. Yang ◽  
Eric S. Daar ◽  
Beth D. Jamieson ◽  
Arumugam Balamurugan ◽  
Davey M. Smith ◽  
...  

ABSTRACT Sequential infection with different strains of human immunodeficiency virus type 1 (HIV-1) is a rarely identified phenomenon with important implications for immunopathogenesis and vaccine development. Here, we identify an individual whose good initial control of viremia was lost in association with reduced containment of a superinfecting strain. Subject 2030 presented with acute symptoms of HIV-1 infection with high viremia and an incomplete seroconversion as shown by Western blotting. A low set point of viremia (∼1,000 HIV-1 copies/ml) was initially established without drug therapy, but a new higher set point (∼40,000 HIV-1 copies/ml) manifested about 5 months after infection. Drug susceptibility testing demonstrated a multidrug-resistant virus initially but a fully sensitive virus after 5 months, and an analysis of pol genotypes showed that these were two phylogenetically distinct strains of virus (strains A and B). Replication capacity assays suggested that the outgrowth of strain B was not due to higher fitness conferred by pol, and env sequences indicated that the two strains had the same R5 coreceptor phenotype. Delineation of CD8+-T-lymphocyte responses against HIV-1 showed a striking pattern of decay of the initial cellular immune responses after superinfection, followed by some adaptation of targeting to new epitopes. An examination of targeted sequences suggested that differences in the recognized epitopes contributed to the poor immune containment of strain B. In conclusion, the rapid overgrowth of a superinfecting strain of HIV-1 of the same subtype raises major concerns for effective vaccine development.

2009 ◽  
Vol 83 (8) ◽  
pp. 3617-3625 ◽  
Author(s):  
Xiaoying Shen ◽  
Robert J. Parks ◽  
David C. Montefiori ◽  
Jennifer L. Kirchherr ◽  
Brandon F. Keele ◽  
...  

ABSTRACT The broadly neutralizing human monoclonal antibodies (MAbs) 2F5 and 4E10, both targeting the highly conserved human immunodeficiency virus type 1 (HIV-1) envelope membrane proximal external region (MPER), are among the MAbs with the broadest heterologous neutralizing activity and are of considerable interest for HIV-1 vaccine development. We have identified serum antibodies from an HIV-infected subject that both were broadly neutralizing and specifically targeted MPER epitopes that overlap the 2F5 epitope. These MPER-specific antibodies were made 15 to 20 months following transmission and concomitantly with the development of autoantibodies. Our findings suggest that multiple events (i.e., genetic predisposition and HIV-1 immune dysregulation) may be required for induction of broadly reactive gp41 MPER antibodies in natural infection.


2005 ◽  
Vol 79 (10) ◽  
pp. 6089-6101 ◽  
Author(s):  
Bruce K. Brown ◽  
Janice M. Darden ◽  
Sodsai Tovanabutra ◽  
Tamara Oblander ◽  
Julie Frost ◽  
...  

ABSTRACT A critical priority for human immunodeficiency virus type 1 (HIV-1) vaccine development is standardization of reagents and assays for evaluation of immune responses elicited by candidate vaccines. To provide a panel of viral reagents from multiple vaccine trial sites, 60 international HIV-1 isolates were expanded in peripheral blood mononuclear cells and characterized both genetically and biologically. Ten isolates each from clades A, B, C, and D and 10 isolates each from CRF01_AE and CRF02_AG were prepared from individuals whose HIV-1 infection was evaluated by complete genome sequencing. The main criterion for selection was that the candidate isolate was pure clade or pure circulating recombinant. After expansion in culture, the complete envelope (gp160) of each isolate was verified by sequencing. The 50% tissue culture infectious dose and p24 antigen concentration for each viral stock were determined; no correlation between these two biologic parameters was found. Syncytium formation in MT-2 cells and CCR5 or CXCR4 coreceptor usage were determined for all isolates. Isolates were also screened for neutralization by soluble CD4, a cocktail of monoclonal antibodies, and a pool of HIV-1-positive patient sera. The panel consists of 49 nonsyncytium-inducing isolates that use CCR5 as a major coreceptor and 11 syncytium-inducing isolates that use only CXCR4 or both coreceptors. Neutralization profiles suggest that the panel contains both neutralization-sensitive and -resistant isolates. This collection of HIV-1 isolates represents the six major globally prevalent strains, is exceptionally large and well characterized, and provides an important resource for standardization of immunogenicity assessment in HIV-1 vaccine trials.


1998 ◽  
Vol 72 (10) ◽  
pp. 7840-7845 ◽  
Author(s):  
Leonidas Stamatatos ◽  
Cecilia Cheng-Mayer

ABSTRACT SF162 is a primary (PR), non-syncytium-inducing, macrophagetropic human immunodeficiency virus type 1 (HIV-1) clade B isolate which is resistant to antibody-mediated neutralization. Deletion of the first or second hypervariable envelope gp120 region (V1 or V2 loop, respectively) of this virus does not abrogate its ability to replicate in peripheral blood mononuclear cells and primary macrophages, nor does it alter its coreceptor usage profile. The mutant virus with the V1 loop deletion, SF162ΔV1, remains as resistant to antibody-mediated neutralization as the wild-type virus SF162. In contrast, the mutant virus with the V2 loop deletion, SF162ΔV2, exhibits enhanced susceptibility to neutralization by certain monoclonal antibodies whose epitopes are located within the CD4-binding site and conserved regions of gp120. More importantly, SF162ΔV2 is now up to 170-fold more susceptible to neutralization than SF162 by sera collected from patients infected with clade B HIV-1 isolates. In addition, it becomes susceptible to neutralization by sera collected from patients infected with clade A, C, D, E, and F HIV-1 isolates. These findings suggest that the V2, but not the V1, loop of SF162 shields an as yet unidentified region of the HIV envelope rich in neutralization epitopes and that the overall structure of this region appears to be conserved among clade B, C, D, E, and F HIV-1 PR isolates.


2001 ◽  
Vol 75 (19) ◽  
pp. 9287-9296 ◽  
Author(s):  
Susan E. Malenbaum ◽  
David Yang ◽  
Cecilia Cheng-Mayer

ABSTRACT We compared the immune responses to the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins in humans and macaques with the use of clade A and clade B isogenic V3 loop glycan-possessing and -deficient viruses. We found that the presence or absence of the V3 loop glycan affects to similar extents immune recognition by a panel of anti-HIV human and anti-simian/human immunodeficiency virus (anti-SHIV) macaque sera. All sera tested neutralized the glycan-deficient viruses, in which the conserved CD4BS and CD4i epitopes are more exposed, better than the glycan-containing viruses. The titer of broadly neutralizing antibodies appears to be higher in the sera of macaques infected with glycan-deficient viruses. Collectively, our data add legitimacy to the use of SHIV-macaque models for testing the efficacy of HIV-1 Env-based immunogens. Furthermore, they suggest that antibodies to the CD4BS and CD4i sites of gp120 are prevalent in human and macaque sera and that the use of immunogens in which these conserved neutralizing epitopes are more exposed is likely to increase their immunogenicity.


2000 ◽  
Vol 74 (23) ◽  
pp. 11008-11016 ◽  
Author(s):  
Susan E. Malenbaum ◽  
David Yang ◽  
Lisa Cavacini ◽  
Marshall Posner ◽  
James Robinson ◽  
...  

ABSTRACT We investigated the underlying mechanism by which the highly conserved N-terminal V3 loop glycan of gp120 conferred resistance to neutralization of human immunodeficiency virus type 1 (HIV-1). We find that the presence or absence of this V3 glycan on clade A and B viruses accorded various degrees of susceptibility to neutralization by antibodies to the CD4 binding site, CD4-induced epitopes, and chemokine receptors. Our data suggest that this carbohydrate moiety on gp120 blocks access to the binding site for CD4 and modulates the chemokine receptor binding site of phenotypically diverse clade A and clade B isolates. Its presence also contributes to the masking of CD4-induced epitopes on clade B envelopes. These findings reveal a common mechanism by which diverse HIV-1 isolates escape immune recognition. Furthermore, the observation that conserved functional epitopes of HIV-1 are more exposed on V3 glycan-deficient envelope glycoproteins provides a basis for exploring the use of these envelopes as vaccine components.


2008 ◽  
Vol 82 (13) ◽  
pp. 6762-6766 ◽  
Author(s):  
Rajintha M. Bandaranayake ◽  
Moses Prabu-Jeyabalan ◽  
Junko Kakizawa ◽  
Wataru Sugiura ◽  
Celia A. Schiffer

ABSTRACT The effect of amino acid variability between human immunodeficiency virus type 1 (HIV-1) clades on structure and the emergence of resistance mutations in HIV-1 protease has become an area of significant interest in recent years. We determined the first crystal structure of the HIV-1 CRF01_AE protease in complex with the p1-p6 substrate to a resolution of 2.8 Å. Hydrogen bonding between the flap hinge and the protease core regions shows significant structural rearrangements in CRF01_AE protease compared to the clade B protease structure.


2003 ◽  
Vol 77 (18) ◽  
pp. 10028-10036 ◽  
Author(s):  
Leor S. Weinberger ◽  
David V. Schaffer ◽  
Adam P. Arkin

ABSTRACT Recent reports confirm that, due to the presence of long-lived, latently infected cell populations, eradication of human immunodeficiency virus type 1 (HIV-1) from infected patients by using antiretroviral drugs will be exceedingly difficult. An alternative to virus eradication may be to use gene therapy to induce a pseudo-latent state in virus-producing cells, thus transforming HIV-1 into a lifelong, but manageable, virus. Conditionally replicating HIV-1 (crHIV-1) gene therapy vectors provide an avenue for subduing HIV-1 expression in infected cells (by creating a parasite, crHIV-1, of the parasite HIV-1), potentially reducing the HIV-1 set point and delaying AIDS onset. Development of crHIV-1 vectors has proceeded in vitro, but the requirements for a crHIV-1 vector to proliferate and persist in vivo have not been explored. We expand a widely accepted mathematical model of HIV-1 in vivo dynamics to include a crHIV-1 gene therapy virus and derive a simple criterion for designing crHIV-1 viruses that will persist in vivo. The model introduces only two new parameters—HIV-1 inhibition and crHIV-1 production—and both can be experimentally engineered and controlled. Analysis demonstrates that crHIV-1 gene therapy can indefinitely reduce HIV-1 set point to levels comparable to those achieved with highly active antiretroviral therapy, provided crHIV-1 production is more efficient than HIV-1. Paradoxically, highly efficient therapeutic inhibition of HIV-1 was found to be disadvantageous. Thus, the field may benefit by shifting the search for more potent antiviral genes toward engineering optimized therapy viruses that package ultraefficiently while downregulating viral production moderately.


2005 ◽  
Vol 79 (16) ◽  
pp. 10108-10125 ◽  
Author(s):  
Ming Li ◽  
Feng Gao ◽  
John R. Mascola ◽  
Leonidas Stamatatos ◽  
Victoria R. Polonis ◽  
...  

ABSTRACT Induction of broadly cross-reactive neutralizing antibodies is a high priority for AIDS vaccine development but one that has proven difficult to be achieved. While most immunogens generate antibodies that neutralize a subset of T-cell-line-adapted strains of human immunodeficiency virus type 1 (HIV-1), none so far have generated a potent, broadly cross-reactive response against primary isolates of the virus. Even small increments in immunogen improvement leading to increases in neutralizing antibody titers and cross-neutralizing activity would accelerate vaccine development; however, a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult. Thus, there is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution. To facilitate this, full-length gp160 genes were cloned from acute and early subtype B infections and characterized for use as reference reagents to assess neutralizing antibodies against clade B HIV-1. Individual gp160 clones were screened for infectivity as Env-pseudotyped viruses in a luciferase reporter gene assay in JC53-BL (TZM-bl) cells. Functional env clones were sequenced and their neutralization phenotypes characterized by using soluble CD4, monoclonal antibodies, and serum samples from infected individuals and noninfected recipients of a recombinant gp120 vaccine. Env clones from 12 R5 primary HIV-1 isolates were selected that were not unusually sensitive or resistant to neutralization and comprised a wide spectrum of genetic, antigenic, and geographic diversity. These reference reagents will facilitate proficiency testing and other validation efforts aimed at improving assay performance across laboratories and can be used for standardized assessments of vaccine-elicited neutralizing antibodies.


2006 ◽  
Vol 80 (11) ◽  
pp. 5552-5562 ◽  
Author(s):  
Yasuyuki Eda ◽  
Mari Takizawa ◽  
Toshio Murakami ◽  
Hiroaki Maeda ◽  
Kazuhiko Kimachi ◽  
...  

ABSTRACT An antibody response capable of neutralizing not only homologous but also heterologous forms of the CXCR4-tropic human immunodeficiency virus type 1 (HIV-1) MNp and CCR5-tropic primary isolate HIV-1 JR-CSF was achieved through sequential immunization with a combination of synthetic peptides representing HIV-1 Env V3 sequences from field and laboratory HIV-1 clade B isolates. In contrast, repeated immunization with a single V3 peptide generated antibodies that neutralized only type-specific laboratory-adapted homologous viruses. To determine whether the cross-neutralization response could be attributed to a cross-reactive antibody in the immunized animals, we isolated a monoclonal antibody, C25, which neutralized the heterologous primary viruses of HIV-1 clade B. Furthermore, we generated a humanized monoclonal antibody, KD-247, by transferring the genes of the complementary determining region of C25 into genes of the human V region of the antibody. KD-247 bound with high affinity to the “PGR” motif within the HIV-1 Env V3 tip region, and, among the established reference antibodies, it most effectively neutralized primary HIV-1 field isolates possessing the matching neutralization sequence motif, suggesting its promise for clinical applications involving passive immunizations. These results demonstrate that sequential immunization with B-cell epitope peptides may contribute to a humoral immune-based HIV vaccine strategy. Indeed, they help lay the groundwork for the development of HIV-1 vaccine strategies that use sequential immunization with biologically relevant peptides to overcome difficulties associated with otherwise poorly immunogenic epitopes.


2002 ◽  
Vol 76 (6) ◽  
pp. 3059-3064 ◽  
Author(s):  
Daniah A. D. Thompson ◽  
Emmanuel G. Cormier ◽  
Tatjana Dragic

ABSTRACT CCR5 and CXCR4 usage has been studied extensively with a variety of clade B human immunodeficiency virus type 1 (HIV-1) isolates. The determinants of CCR5 coreceptor function are remarkably consistent, with a region critical for fusion and entry located in the CCR5 amino-terminal domain (Nt). In particular, negatively charged amino acids and sulfated tyrosines in the Nt are essential for gp120 binding to CCR5. The same types of residues are important for CXCR4-mediated viral fusion and entry, but they are dispersed throughout the extracellular domains of CXCR4, and their usage is isolate dependent. Here, we report on the determinants of CCR5 and CXCR4 coreceptor function for a panel of non-clade B isolates that are responsible for the majority of new HIV-1 infections worldwide. Consistent with clade B isolates, CXCR4 usage remains isolate dependent and is determined by the overall content of negatively charged and tyrosine residues. Residues in the Nt of CCR5 that are important for fusion and entry of clade B isolates are also important for the entry of all non-clade B HIV-1 isolates that we tested. Surprisingly, we found that in contrast to clade B isolates, a cluster of residues in the second extracellular loop of CCR5 significantly affects fusion and entry of all non-clade B isolates tested. This points to a different mechanism of CCR5 usage by these viruses and may have important implications for the development of HIV-1 inhibitors that target CCR5 coreceptor function.


Sign in / Sign up

Export Citation Format

Share Document