nucleoside analogue
Recently Published Documents


TOTAL DOCUMENTS

585
(FIVE YEARS 53)

H-INDEX

45
(FIVE YEARS 4)

2021 ◽  
Author(s):  
◽  
Ye Li

<p>Infections caused by RNA viruses, such as Ebola and Zika, continue to exist worldwide as significant public health problems. In response to the urgent need for safer and more efficacious treatment options to treat infections caused by RNA viruses, the pharmaceutical and biotechnology industries have devoted significant efforts over the last two decades to discovering and developing new antiviral agents. One such antiviral, Sofosbuvir®, was approved by the US Federal Drug Administration (FDA) in 2014 and has revolutionized the treatment of Hepatitis-C. Sofosbuvir® was the second largest selling drug in the world in 2016 and in just twenty-one months Gilead reported sales worth $26.6 billion USD.The strategy of using nucleoside analogues to inhibit viral RNA dependent RNA polymerase(RdRp)has been pursued since the 1970s, and exemplified bythe discovery and development of ribavirin. The natural substrates of RNA polymerases are nucleoside triphosphates and often the efficacy of nucleoside analogues as antivirals are dependent on their ability to be converted by the host or virus to mono-, di-, and ultimately tri-phosphate analogues which block the active site of RNA polymerase as an analogue of the substrate causing chain termination. Recently Biocryst Pharmaceuticals (Biocryst) described the anti-viral properties of Immucillin-A (Galidesivir), an iminoribitol based nucleoside analogue, which was found to have broad spectrum antiviral activity especially against RNA viruses including Ebola. Researchers at the Ferrier Research Institute (Ferrier) have synthesizedan analogue of Immucillin-A, 8-aza-Immucillin-A (AIA) which shows comparable activityto Immucillin-A, in anti-viral screens against Ebola, and this antiviral activity forms part of a US patent application. The Ferrier is keen to further exemplify this compound class through the synthesis of analogues of both Immucillin-A and AIA as well as improve the overall synthesis of the lead compound AIA.Included as part of this study is the synthesis of pro-drugs of these iminoribitol based nucleoside analogues. Prodrugs are metabolized inside the body and are often converted to the corresponding pharmacologically active form. In general, prodrug strategies have improved the bioavailability and efficacy of many drugs. In particular, prodrugs strategies involving nucleoside analogue antivirals, which target RNA polymerase, have been particularly effective as they ensure conversion to the monophosphate in vivo. Conversion to the 5’-monophosphate form of a nucleoside analogue is the rate limiting step to the inhibition of the RNA polymerase –prior to its conversion to the triphosphateanalogue. The prodrug is effectively a protected monophosphate, and is then readily converted to monophosphate by the host and then onto the di-and tri-phosphate by kinases in both the host and virus. ProTide prodrugs, such as Sofosbuvir® provide a verified strategy for improving anti-viral activity and hence our desire to synthesize pro-drugs of all our iminoribitol based nucleoside analogues. This research thesis also involved repeating the known synthesis of the Immucillins, in particular, Immucillin-H (Forodesine), which requires in excess of 20 linear synthetic steps to make. The linear synthetic route to Immucillin-H was used instead of the more convenient convergent method developed by the Ferrier as several key synthetic intermediates in this progress were utilized in the attempted synthesis of some of the planned nucleoside analogues of AIA. As part of this work the candidate learned aspects of scaling up chemical reactions andthe critical analysis of both reaction hazards and reagent compatibilities at scale. Where possible and given the number of synthetic steps involved the candidate was also interested in improving the yields of the building blocks involved in the synthesis of the Immucillins with limited success.</p>


2021 ◽  
Author(s):  
◽  
Ye Li

<p>Infections caused by RNA viruses, such as Ebola and Zika, continue to exist worldwide as significant public health problems. In response to the urgent need for safer and more efficacious treatment options to treat infections caused by RNA viruses, the pharmaceutical and biotechnology industries have devoted significant efforts over the last two decades to discovering and developing new antiviral agents. One such antiviral, Sofosbuvir®, was approved by the US Federal Drug Administration (FDA) in 2014 and has revolutionized the treatment of Hepatitis-C. Sofosbuvir® was the second largest selling drug in the world in 2016 and in just twenty-one months Gilead reported sales worth $26.6 billion USD.The strategy of using nucleoside analogues to inhibit viral RNA dependent RNA polymerase(RdRp)has been pursued since the 1970s, and exemplified bythe discovery and development of ribavirin. The natural substrates of RNA polymerases are nucleoside triphosphates and often the efficacy of nucleoside analogues as antivirals are dependent on their ability to be converted by the host or virus to mono-, di-, and ultimately tri-phosphate analogues which block the active site of RNA polymerase as an analogue of the substrate causing chain termination. Recently Biocryst Pharmaceuticals (Biocryst) described the anti-viral properties of Immucillin-A (Galidesivir), an iminoribitol based nucleoside analogue, which was found to have broad spectrum antiviral activity especially against RNA viruses including Ebola. Researchers at the Ferrier Research Institute (Ferrier) have synthesizedan analogue of Immucillin-A, 8-aza-Immucillin-A (AIA) which shows comparable activityto Immucillin-A, in anti-viral screens against Ebola, and this antiviral activity forms part of a US patent application. The Ferrier is keen to further exemplify this compound class through the synthesis of analogues of both Immucillin-A and AIA as well as improve the overall synthesis of the lead compound AIA.Included as part of this study is the synthesis of pro-drugs of these iminoribitol based nucleoside analogues. Prodrugs are metabolized inside the body and are often converted to the corresponding pharmacologically active form. In general, prodrug strategies have improved the bioavailability and efficacy of many drugs. In particular, prodrugs strategies involving nucleoside analogue antivirals, which target RNA polymerase, have been particularly effective as they ensure conversion to the monophosphate in vivo. Conversion to the 5’-monophosphate form of a nucleoside analogue is the rate limiting step to the inhibition of the RNA polymerase –prior to its conversion to the triphosphateanalogue. The prodrug is effectively a protected monophosphate, and is then readily converted to monophosphate by the host and then onto the di-and tri-phosphate by kinases in both the host and virus. ProTide prodrugs, such as Sofosbuvir® provide a verified strategy for improving anti-viral activity and hence our desire to synthesize pro-drugs of all our iminoribitol based nucleoside analogues. This research thesis also involved repeating the known synthesis of the Immucillins, in particular, Immucillin-H (Forodesine), which requires in excess of 20 linear synthetic steps to make. The linear synthetic route to Immucillin-H was used instead of the more convenient convergent method developed by the Ferrier as several key synthetic intermediates in this progress were utilized in the attempted synthesis of some of the planned nucleoside analogues of AIA. As part of this work the candidate learned aspects of scaling up chemical reactions andthe critical analysis of both reaction hazards and reagent compatibilities at scale. Where possible and given the number of synthetic steps involved the candidate was also interested in improving the yields of the building blocks involved in the synthesis of the Immucillins with limited success.</p>


2021 ◽  
Author(s):  
Ashleigh Burke ◽  
William Birmingham ◽  
Ying Zhuo ◽  
Bruna Zuculoto da Costa ◽  
Rebecca Crawshaw ◽  
...  

The COVID-19 pandemic highlights the urgent need for cost-effective processes to rapidly manufacture antiviral drugs at scale. Here we report a concise biocatalytic process for Molnupiravir, a nucleoside analogue currently in phase 3 clinical trials as an orally available treatment for SARS-CoV-2. Key to the success of this process was the development of a cytidine aminotransferase for the production of N-hydroxy-cytidine through evolutionary adaption of the hydrolytic enzyme cytidine deaminase. This engineered biocatalyst performs >100,000 turnovers in less than 30 minutes, operates at 180 g/L substrate loading and benefits from in situ crystallization of the N-hydroxy-cytidine product (>90% yield), which can be converted to Molnupiravir by a selective 5’-acylation using Novozym® 435.


Author(s):  
Tamara Rothenburger ◽  
Dominique Thomas ◽  
Yannick Schreiber ◽  
Paul R. Wratil ◽  
Tamara Pflantz ◽  
...  

Abstract Background SAMHD1 mediates resistance to anti-cancer nucleoside analogues, including cytarabine, decitabine, and nelarabine that are commonly used for the treatment of leukaemia, through cleavage of their triphosphorylated forms. Hence, SAMHD1 inhibitors are promising candidates for the sensitisation of leukaemia cells to nucleoside analogue-based therapy. Here, we investigated the effects of the cytosine analogue CNDAC, which has been proposed to be a SAMHD1 inhibitor, in the context of SAMHD1. Methods CNDAC was tested in 13 acute myeloid leukaemia (AML) cell lines, in 26 acute lymphoblastic leukaemia (ALL) cell lines, ten AML sublines adapted to various antileukaemic drugs, 24 single cell-derived clonal AML sublines, and primary leukaemic blasts from 24 AML patients. Moreover, 24 CNDAC-resistant sublines of the AML cell lines HL-60 and PL-21 were established. The SAMHD1 gene was disrupted using CRISPR/Cas9 and SAMHD1 depleted using RNAi, and the viral Vpx protein. Forced DCK expression was achieved by lentiviral transduction. SAMHD1 promoter methylation was determined by PCR after treatment of genomic DNA with the methylation-sensitive HpaII endonuclease. Nucleoside (analogue) triphosphate levels were determined by LC-MS/MS. CNDAC interaction with SAMHD1 was analysed by an enzymatic assay and by crystallisation. Results Although the cytosine analogue CNDAC was anticipated to inhibit SAMHD1, SAMHD1 mediated intrinsic CNDAC resistance in leukaemia cells. Accordingly, SAMHD1 depletion increased CNDAC triphosphate (CNDAC-TP) levels and CNDAC toxicity. Enzymatic assays and crystallisation studies confirmed CNDAC-TP to be a SAMHD1 substrate. In 24 CNDAC-adapted acute myeloid leukaemia (AML) sublines, resistance was driven by DCK (catalyses initial nucleoside phosphorylation) loss. CNDAC-adapted sublines displayed cross-resistance only to other DCK substrates (e.g. cytarabine, decitabine). Cell lines adapted to drugs not affected by DCK or SAMHD1 remained CNDAC sensitive. In cytarabine-adapted AML cells, increased SAMHD1 and reduced DCK levels contributed to cytarabine and CNDAC resistance. Conclusion Intrinsic and acquired resistance to CNDAC and related nucleoside analogues are driven by different mechanisms. The lack of cross-resistance between SAMHD1/ DCK substrates and non-substrates provides scope for next-line therapies after treatment failure.


Author(s):  
Mohammad Alhilal ◽  
Yaser A. M. Sulaiman ◽  
Suzan Alhilal ◽  
Sobhi M. Gomha ◽  
Salama A. Ouf

2021 ◽  
Vol 17 (9) ◽  
pp. e1009929
Author(s):  
Agnieszka M. Szemiel ◽  
Andres Merits ◽  
Richard J. Orton ◽  
Oscar A. MacLean ◽  
Rute Maria Pinto ◽  
...  

Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance.


2021 ◽  
pp. clincanres.1652.2021
Author(s):  
Hagen Schwenzer ◽  
Erica De Zan ◽  
Mustafa Elshani ◽  
Ruud van Stiphout ◽  
Mary Kudsy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document