scholarly journals Importin-α Promotes Passage through the Nuclear Pore Complex of Human Immunodeficiency Virus Type 1 Vpr

2005 ◽  
Vol 79 (6) ◽  
pp. 3557-3564 ◽  
Author(s):  
Masakazu Kamata ◽  
Yuko Nitahara-Kasahara ◽  
Yoichi Miyamoto ◽  
Yoshihiro Yoneda ◽  
Yoko Aida

ABSTRACT Viral protein R (Vpr) of human immunodeficiency virus type 1 has potent karyophilic properties, but details of the mechanism by which it enters the nucleus remain to be clarified. We reported previously that two regions, located between residues 17 and 34 (αH1) and between residues 46 and 74 (αH2), are indispensable for the nuclear localization of Vpr. Here, we reveal that a chimeric protein composed of the nuclear localization signal of Vpr, glutathione S-transferase, and green fluorescent protein was localized at the nuclear envelope and then entered the nucleus upon addition of importin-α. An in vitro transport assay using a series of derivatives of importin-α demonstrated that the carboxyl terminus was required for this nuclear import process. We also showed that Vpr interacts with importin-α through αH1 and αH2; only the interaction via αH1 is indispensable for the nuclear entry of Vpr. These observations indicate that importin-α functions as a mediator for the nuclear entry of Vpr.

1999 ◽  
Vol 19 (2) ◽  
pp. 1210-1217 ◽  
Author(s):  
Ray Truant ◽  
Bryan R. Cullen

ABSTRACT Protein nuclear import is generally mediated by basic nuclear localization signals (NLSs) that serve as targets for the importin α (Imp α) NLS receptor. Imp α is in turn bound by importin β (Imp β), which targets the resultant protein complex to the nucleus. Here, we report that the arginine-rich NLS sequences present in the human immunodeficiency virus type 1 regulatory proteins Tat and Rev fail to interact with Imp α and instead bind directly to Imp β. Using in vitro nuclear import assays, we demonstrate that Imp α is entirely dispensable for Tat and Rev nuclear import. In contrast, Imp β proved both sufficient and necessary, in that other β-like import factors, such as transportin, were unable to support Tat or Rev nuclear import. Using in vitro competition assays, it was demonstrated that the target sites on Imp β for Imp α, Tat, and Rev binding either are identical or at least overlap. The interaction of Tat and Rev with Imp β is also similar to Imp α binding in that it is inhibited by RanGTP but not RanGDP, a finding that may in part explain why the interaction of the Rev nuclear RNA export factor with target RNA species is efficient in the cell nucleus yet is released in the cytoplasm. Together, these studies define a novel class of arginine-rich NLS sequences that are direct targets for Imp β and that therefore function independently of Imp α.


1999 ◽  
Vol 73 (8) ◽  
pp. 6937-6945 ◽  
Author(s):  
Eli Boritz ◽  
Jennifer Gerlach ◽  
J. Erik Johnson ◽  
John K. Rose

ABSTRACT We describe a replication-competent, recombinant vesicular stomatitis virus (VSV) in which the gene encoding the single transmembrane glycoprotein (G) was deleted and replaced by anenv-G hybrid gene encoding the extracellular and transmembrane domains of a human immunodeficiency virus type 1 (HIV-1) envelope protein fused to the cytoplasmic domain of VSV G. An additional gene encoding a green fluorescent protein was added to permit rapid detection of infection. This novel surrogate virus infected and propagated on cells expressing the HIV receptor CD4 and coreceptor CXCR4. Infection was blocked by SDF-1, the ligand for CXCR4, by antibody to CD4 and by HIV-neutralizing antibody. This virus, unlike VSV, entered cells by a pH-independent pathway and thus supports a pH-independent pathway of HIV entry. Additional recombinants carrying hybrid env-G genes derived from R5 or X4R5 HIV strains also showed the coreceptor specificities of the HIV strains from which they were derived. These surrogate viruses provide a simple and rapid assay for HIV-neutralizing antibodies as well as a rapid screen for molecules that would interfere with any stage of HIV binding or entry. The viruses might also be useful as HIV vaccines. Our results suggest wide applications of other surrogate viruses based on VSV.


1998 ◽  
Vol 72 (7) ◽  
pp. 6004-6013 ◽  
Author(s):  
Ron A. M. Fouchier ◽  
Barbara E. Meyer ◽  
James H. M. Simon ◽  
Utz Fischer ◽  
Andrew V. Albright ◽  
...  

ABSTRACT The Vpr protein of human immunodeficiency virus type 1 (HIV-1) performs a number of functions that are associated with the nucleus. Vpr enhances the nuclear import of postentry viral nucleoprotein complexes, arrests proliferating cells in the G2phase of the cell cycle, and acts as a modest transcriptional activator. For this paper, we have investigated the nuclear import of Vpr. Although Vpr does not encode a sequence that is recognizable as a nuclear localization signal (NLS), Vpr functions as a transferable NLS both in somatic cells and inXenopus laevis oocytes. In certain contexts, Vpr also mediates substantial accumulation at the nuclear envelope and, in particular, at nuclear pore complexes (NPCs). Consistent with this, Vpr is shown to interact specifically with nucleoporin phenylalanine-glycine (FG)-repeat regions. These findings not only demonstrate that Vpr harbors a bona fide NLS but also raise the possibility that one (or more) of Vpr’s functions may take place at the NPC.


2007 ◽  
Vol 82 (4) ◽  
pp. 1923-1933 ◽  
Author(s):  
Kazushi Motomura ◽  
Jianbo Chen ◽  
Wei-Shau Hu

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) and HIV-2 are genetically distinct viruses that each can cause AIDS. Approximately 1 million people are infected with both HIV-1 and HIV-2. Additionally, these two viruses use the same receptor and coreceptors and can therefore infect the same target cell populations. To explore potential genetic interactions, we first examined whether RNAs from HIV-1 and HIV-2 can be copackaged into the same virion. We used modified near-full-length viruses that each contained a green fluorescent protein gene (gfp) with a different inactivating mutation. Thus, a functional gfp could be reconstituted via recombination, which was used to detect the copackaging of HIV-1 and HIV-2 RNAs. The GFP-positive (GFP+) phenotype was detected in approximately 0.2% of the infection events, which was 35-fold lower than the intrasubtype HIV-1 rates. We isolated and characterized 54 GFP+ single-cell clones and determined that all of them contained proviruses with reconstituted gfp. We then mapped the general structures of the recombinant viruses and characterized the recombination junctions by DNA sequencing. We observed several different recombination patterns, including those that had crossovers only in gfp. The most common hybrid genomes had heterologous long terminal repeats. Although infrequent, crossovers in the viral sequences were also identified. Taken together, our study demonstrates that HIV-1 and HIV-2 can recombine, albeit at low frequencies. These observations indicate that multiple factors are likely to restrict the generation of viable hybrid HIV-1 and HIV-2 viruses. However, considering the large coinfected human population and the high viral load in patients, these rare events could provide the basis for the generation of novel human immunodeficiency viruses.


2004 ◽  
Vol 6 (8) ◽  
pp. 715-724 ◽  
Author(s):  
Hirotaka Ebina ◽  
Jun Aoki ◽  
Shunsuke Hatta ◽  
Takeshi Yoshida ◽  
Yoshio Koyanagi

Virology ◽  
1997 ◽  
Vol 228 (2) ◽  
pp. 360-370 ◽  
Author(s):  
Victor I Romanov ◽  
Andrei S Zolotukhin ◽  
Nikolai N Aleksandroff ◽  
Pedro Pinto Da Silva ◽  
Barbara K Felber

2009 ◽  
Vol 83 (7) ◽  
pp. 3258-3267 ◽  
Author(s):  
Ruizhong Shen ◽  
Holly E. Richter ◽  
Ronald H. Clements ◽  
Lea Novak ◽  
Kayci Huff ◽  
...  

ABSTRACT Mucosal surfaces play a major role in human immunodeficiency virus type 1 (HIV-1) transmission and pathogenesis, and yet the role of lamina propria macrophages in mucosal HIV-1 infection has received little investigative attention. We report here that vaginal and intestinal macrophages display distinct phenotype and HIV-1 permissiveness profiles. Vaginal macrophages expressed the innate response receptors CD14, CD89, CD16, CD32, and CD64 and the HIV-1 receptor/coreceptors CD4, CCR5, and CXCR4, similar to monocytes. Consistent with this phenotype, green fluorescent protein-tagged R5 HIV-1 entered macrophages in explanted vaginal mucosa as early as 30 min after inoculation of virus onto the epithelium, and purified vaginal macrophages supported substantial levels of HIV-1 replication by a panel of highly macrophage-tropic R5 viruses. In sharp contrast, intestinal macrophages expressed no detectable, or very low levels of, innate response receptors and HIV-1 receptor/coreceptors and did not support HIV-1 replication, although virus occasionally entered macrophages in intestinal tissue explants. Thus, vaginal, but not intestinal, macrophages are monocyte-like and permissive to R5 HIV-1 after the virus has translocated across the epithelium. These findings suggest that genital and gut macrophages have different roles in mucosal HIV-1 pathogenesis and that vaginal macrophages play a previously underappreciated but potentially important role in mucosal HIV-1 infection in the female genital tract.


2002 ◽  
Vol 76 (20) ◽  
pp. 10473-10484 ◽  
Author(s):  
Dusan Cmarko ◽  
Stig-Ove Bøe ◽  
Catia Scassellati ◽  
Anne Marie Szilvay ◽  
Svend Davanger ◽  
...  

ABSTRACT To define the human immunodeficiency virus type 1 (HIV-1) RNA maturation pathways, we analyzed the intracellular distribution of HIV-1 RNA and the viral regulatory proteins Rev and Tat in transfected COS cells and HIV-1-infected lymphoid C8166 cells by means of ultrastructural in situ hybridization using antisense RNA probes and immunoelectron microscopy. The intranuclear viral RNA occurs in ribonucleoprotein fibrils in the perichromatin and interchromatin regions. The simultaneous demonstration of Rev, Tat, Br-labeled RNA, and cellular proteins SC35 and CRM1 in such fibrils reveals the potential of Rev to associate with nascent HIV pre-mRNA and its splicing complex and transport machinery. In a rev-minus system, the env intron-containing, incompletely spliced viral RNAs are revealed only in the nucleus, indicating that Rev is required to initiate the transport to the cytoplasm. Moreover, env intron sequences frequently occur in the periphery of interchromatin granule clusters, while the probe containing the rev exon sequence does not associate with this nucleoplasmic domain. When cells were treated with the CRM1 inhibitor leptomycin B in the presence of Rev protein, the env intron containing HIV RNAs formed clusters throughout the nucleoplasm and accumulated at the nuclear pores. This suggests that Rev is necessary and probably also sufficient for the accumulation of incompletely spliced HIV RNAs at the nuclear pores while CRM1 is needed for translocation across the nuclear pore complex.


Sign in / Sign up

Export Citation Format

Share Document