genetic recombination
Recently Published Documents


TOTAL DOCUMENTS

1281
(FIVE YEARS 182)

H-INDEX

85
(FIVE YEARS 7)

Author(s):  
Li Wu ◽  
Yilin Lyu ◽  
Pingping Wu ◽  
Tongyu Luo ◽  
Junyuan Zeng ◽  
...  

Kluyveromyces marxianus is the fastest-growing eukaryote and a promising host for producing bioethanol and heterologous proteins. To perform a laboratory evolution of thermal tolerance in K. marxianus, diploid, triploid and tetraploid strains were constructed, respectively. Considering the genetic diversity caused by genetic recombination in meiosis, we established an iterative cycle of “diploid/polyploid - meiosis - selection of spores at high temperature” to screen thermotolerant strains. Results showed that the evolution of thermal tolerance in diploid strain was more efficient than that in triploid and tetraploid strains. The thermal tolerance of the progenies of diploid and triploid strains after a two-round screen was significantly improved than that after a one-round screen, while the thermal tolerance of the progenies after the one-round screen was better than that of the initial strain. After a two-round screen, the maximum tolerable temperature of Dip2-8, a progeny of diploid strain, was 3°C higher than that of the original strain. Whole-genome sequencing revealed nonsense mutations of PSR1 and PDE2 in the thermotolerant progenies. Deletion of either PSR1 or PDE2 in the original strain improved thermotolerance and two deletions displayed additive effects, suggesting PSR1 and PDE2 negatively regulated the thermotolerance of K. marxianus in parallel pathways. Therefore, the iterative cycle of “meiosis - spore screening” developed in this study provides an efficient way to perform the laboratory evolution of heat resistance in yeast.


2022 ◽  
Vol 23 (2) ◽  
pp. 635
Author(s):  
Joanna Morcinek-Orłowska ◽  
Karolina Zdrojewska ◽  
Alicja Węgrzyn

DNA polymerases are enzymes capable of synthesizing DNA. They are involved in replication of genomes of all cellular organisms as well as in processes of DNA repair and genetic recombination. However, DNA polymerases can also be encoded by viruses, including bacteriophages, and such enzymes are involved in viral DNA replication. DNA synthesizing enzymes are grouped in several families according to their structures and functions. Nevertheless, there are examples of bacteriophage-encoded DNA polymerases which are significantly different from other known enzymes capable of catalyzing synthesis of DNA. These differences are both structural and functional, indicating a huge biodiversity of bacteriophages and specific properties of their enzymes which had to evolve under certain conditions, selecting unusual properties of the enzymes which are nonetheless crucial for survival of these viruses, propagating as special kinds of obligatory parasites. In this review, we present a brief overview on DNA polymerases, and then we discuss unusual properties of different bacteriophage-encoded enzymes, such as those able to initiate DNA synthesis using the protein-priming mechanisms or even start this process without any primer, as well as able to incorporate untypical nucleotides. Apart from being extremely interesting examples of biochemical biodiversity, bacteriophage-encoded DNA polymerases can also be useful tools in genetic engineering and biotechnology.


2022 ◽  
Vol 5 (2) ◽  
pp. 01-04
Author(s):  
Kashif Aziz Ahmad ◽  
Saleha Akram Nizami ◽  
Muhammad Haroon Ghous

COVID-19 is basically a medium size RNA virus and the nucleic acid is about 30 kb long, positive in sense, single stranded and polyadenylated. The RNA which is found in this virus is the largest known RNA and codes for a large polyprotein. In addition, coronaviruses are capable of genetic recombination if 2 viruses infect the same cell at the same time. SARS-CoV emerged first in southern China and rapidly spread around the globe in 2002–2003. In November 2002, an unusual epidemic of atypical pneumonia with a high rate of nosocomial transmission to health-care workers occurred in Foshan, Guangdong, China. In March 2003, a novel CoV was confirmed to be the causative agent for SARS, and was thus named SARS-CoV. Despite the report of a large number of virus-based and host-based treatment options with potent in vitro activities for SARS and MERS, only a few are likely to fulfil their potential in the clinical setting in the foreseeable future. Most drugs have one or more major limitations that prevent them from proceeding beyond the in vitro stage. First, many drugs have high EC50/Cmax ratios at clinically relevant dosages


2022 ◽  
Vol 9 ◽  
Author(s):  
Salome Hosch ◽  
Maxmillian Mpina ◽  
Elizabeth Nyakurungu ◽  
Nelson Silochi Borico ◽  
Teodora Mikumu Alogo Obama ◽  
...  

COVID-19 disease caused by SARS-CoV-2 represents an ongoing global public health emergency. Rapid identification of emergence, evolution, and spread of SARS-CoV-2 variants of concern (VOC) would enable timely and tailored responses by public health decision-making bodies. Yet, global disparities in current SARS-CoV-2 genomic surveillance activities reveal serious geographical gaps. Here, we discuss the experiences and lessons learned from the SARS-CoV-2 monitoring and surveillance program at the Public Health Laboratory on Bioko Island, Equatorial Guinea that was implemented as part of the national COVID-19 response and monitoring activities. We report how three distinct SARS-CoV-2 variants have dominated the epidemiological situation in Equatorial Guinea since March 2020. In addition, a case of co-infection of two SARS-CoV-2 VOC, Beta and Delta, in a clinically asymptomatic and fully COVID-19 vaccinated man living in Equatorial Guinea is presented. To our knowledge, this is the first report of a person co-infected with Beta and Delta VOC globally. Rapid identification of co-infections is relevant since these might provide an opportunity for genetic recombination resulting in emergence of novel SARS-CoV-2 lineages with enhanced transmission or immune evasion potential.


2022 ◽  
Vol 147 (1) ◽  
pp. 53-61
Author(s):  
Prashant Bhandari ◽  
Reza Shekasteband ◽  
Tong Geon Lee

The first consensus genetic map in fresh-market tomato (Solanum lycopersicum) was constructed, combining genetic recombination data from two biparental F2 segregating populations derived from four different fresh-market tomatoes. Each F2 population was nominated by different academic tomato breeding programs located in major fresh-market tomato-producing areas of the United States, and chromosome-wide variation in recombination rates was observed between tomato populations based on the origin of their breeding programs. A consensus map constructed using 335 common single nucleotide polymorphism (SNP) sites found in both populations spanned 737.3 cM across 12 tomato chromosomes, with chromosome 2 containing more than 40% of the total SNPs and chromosomes 4, 5, 7, and 10 together representing less than 10% of the SNPs. There was a high degree of collinearity between the genetic and physical positions of those 335 SNP markers. The integration of 6553 SNP sites that were detected in either of the two populations with 335 common sites resulted in an extended consensus genetic map. The total length of the extended map was estimated to be 1997.9 cM, which was compatible with a previous estimate for large-fruited fresh-market tomato. A linkage panel for fresh-market tomato was also established using the combined dataset of the consensus map of 335 SNP loci and 73 SNP-genotyped core fresh-market tomatoes. An empirical genetic mapping study of the tomato brachytic trait using the linkage panel demonstrated the value of the consensus map and linkage panel for tomato research. The allelic information in the linkage panel will serve as a basis for SNP marker implementation, such as genotyping platforms and genomic association map, in tomato.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 67
Author(s):  
Mohammad Enayet Hossain ◽  
Ariful Islam ◽  
Shariful Islam ◽  
Md Kaisar Rahman ◽  
Mojnu Miah ◽  
...  

Canine coronavirus (CCoV) is widespread among the dog population and causes gastrointestinal disorders, and even fatal cases. As the zoonotic transmission of viruses from animals to humans has become a worldwide concern nowadays, it is necessary to screen free-roaming dogs for their common pathogens due to their frequent interaction with humans. We conducted a cross-sectional study to detect and characterize the known and novel Corona, Filo, Flavi, and Paramyxoviruses in free-roaming dogs in Bangladesh. Between 2009–10 and 2016–17, we collected swab samples from 69 dogs from four districts of Bangladesh, tested using RT-PCR and sequenced. None of the samples were positive for Filo, Flavi, and Paramyxoviruses. Only three samples (4.3%; 95%CI: 0.9–12.2) tested positive for Canine Coronavirus (CCoV). The CCoV strains identified were branched with strains of genotype CCoV-II with distinct distances. They are closely related to CCoVs from the UK, China, and other CoVs isolated from different species, which suggests genetic recombination and interspecies transmission of CCoVs. These findings indicate that CCoV is circulating in dogs of Bangladesh. Hence, we recommend future studies on epidemiology and genetic characterization with full-genome sequencing of emerging coronaviruses in companion animals in Bangladesh.


2021 ◽  
Author(s):  
Andrea Galli ◽  
Ulrik Fahnøe ◽  
Jens Bukh

Abstract Genetic recombination is an important evolutionary mechanism for RNA viruses and can facilitate escape from immune and drug pressure. Recombinant hepatitis C virus (HCV) variants have rarely been detected in patients, suggesting that HCV has intrinsic low recombination rate. Recombination of HCV has been demonstrated in vitro between non-functional genomes, but its frequency and relevance for viral evolution and life cycle has not been clarified. We developed a cell-based assay to detect and quantify recombination between fully viable HCV genomes, using the reconstitution of green fluorescent protein (GFP) as a surrogate marker for recombination. Here, two GFP-expressing HCV genomes carrying different inactivating GFP mutations can produce a virus carrying a functional GFP by recombining within the GFP region. Generated constructs allowed quantification of recombination rates between markers spaced 603 and 553 nucleotides apart by flow cytometry and next-generation sequencing (NGS). Viral constructs showed comparable spread kinetics and reached similar infectivity titers in Huh7.5 cells, allowing their use in co-transfections and co-infections. Single cycle co-transfection experiments, performed in CD81-deficient S29 cells, showed GFP expression in double-infected cells, demonstrating genome mixing and occurrence of recombination. Quantification of recombinant genomes by NGS revealed an average rate of 6.1%, corresponding to 49% of maximum detectable recombination (MDR). Experiments examining recombination during the full replication cycle of HCV, performed in Huh7.5 cells, demonstrated average recombination rates of 5.0 % (40.0% MDR) and 3.6% (28.8% MDR) for markers spaced by 603 and 553 nucleotides, respectively, supporting a linear relationship between marker distance and recombination rates. First passage infections using recombinant virus supernatant resulted in comparable recombination rates of 5.9% (47.2% MDR) and 3.5% (28.0% MDR), respectively, for markers spaced by 603 and 553 nucleotides. We developed a functional cell-based assay that, to our knowledge, allows for the first-time detailed quantification of recombination rates using fully viable HCV constructs. Our data indicate that HCV recombines at high frequency between highly similar genomes, and that the frequency of recombination increases with the distance between marker sites. These results have implication for our understanding of HCV evolution and emphasize the importance of recombination in the reassortment of mutations in the HCV genome.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ghulam Abbas ◽  
Yue Zhang ◽  
Xiaowei Sun ◽  
Huijie Chen ◽  
Yudong Ren ◽  
...  

Spike (S) glycoprotein is an important virulent factor for coronaviruses (CoVs), and variants of CoVs have been characterized based on S gene analysis. We present phylogenetic relationship of an isolated infectious bronchitis virus (IBV) strain with reference to the available genome and protein sequences based on network, multiple sequence, selection pressure, and evolutionary fingerprinting analysis in People's Republic of China. One hundred and elven strains of CoVs i.e., Alphacoronaviruses (Alpha-CoVs; n = 12), Betacoronaviruses (Beta-CoVs; n = 37), Gammacoronaviruses (Gamma-CoVs; n = 46), and Deltacoronaviruses (Delta-CoVs; n = 16) were selected for this purpose. Phylogenetically, SARS-CoV-2 and SARS-CoVs clustered together with Bat-CoVs and MERS-CoV of Beta-CoVs (C). The IBV HH06 of Avian-CoVs was closely related to Duck-CoV and partridge S14, LDT3 (teal and chicken host). Beluga whale-CoV (SW1) and Bottlenose dolphin-CoVs of mammalian origin branched distantly from other animal origin viruses, however, making group with Avian-CoVs altogether into Gamma-CoVs. The motif analysis indicated well-conserved domains on S protein, which were similar within the same phylogenetic class and but variable at different domains of different origins. Recombination network tree indicated SARS-CoV-2, SARS-CoV, and Bat-CoVs, although branched differently, shared common clades. The MERS-CoVs of camel and human origin spread branched into a different clade, however, was closely associated closely with SARS-CoV-2, SARS-CoV, and Bat-CoVs. Whereas, HCoV-OC43 has human origin and branched together with bovine CoVs with but significant distant from other CoVs like SARS CoV-2 and SARS-CoV of human origin. These findings explain that CoVs' constant genetic recombination and evolutionary process that might maintain them as a potential veterinary and human epidemic threat.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260635
Author(s):  
Ariful Islam ◽  
Jinnat Ferdous ◽  
Md. Abu Sayeed ◽  
Shariful Islam ◽  
Md. Kaisar Rahman ◽  
...  

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) showed susceptibility to diverse animal species. We conducted this study to understand the spatial epidemiology, genetic diversity, and statistically significant genetic similarity along with per-gene recombination events of SARS-CoV-2 and related viruses (SC2r-CoVs) in animals globally. We collected a number of different animal species infected with SARS-CoV-2 and its related viruses. Then, we retrieved genome sequences of SARS-CoV-2 and SC2r-CoVs from GISAID and NCBI GenBank for genomic and mutational analysis. Although the evolutionary origin of SARS-CoV-2 remains elusive, the diverse SC2r-CoV have been detected in multiple Rhinolophus bat species and in Malayan pangolin. To date, human-to-animal spillover events have been reported in cat, dog, tiger, lion, gorilla, leopard, ferret, puma, cougar, otter, and mink in 25 countries. Phylogeny and genetic recombination events of SC2r-CoVs showed higher similarity to the bat coronavirus RaTG13 and BANAL-103 for most of the genes and to some Malayan pangolin coronavirus (CoV) strains for the N protein from bats and pangolin showed close resemblance to SARS-CoV-2. The clustering of animal and human strains from the same geographical area has proved human-to-animal transmission of the virus. The Alpha, Delta and Mu-variant of SARS-CoV-2 was detected in dog, gorilla, lion, tiger, otter, and cat in the USA, India, Czech Republic, Belgium, and France with momentous genetic similarity with human SARS-CoV-2 sequences. The mink variant mutation (spike_Y453F) was detected in both humans and domestic cats. Moreover, the dog was affected mostly by clade O (66.7%), whereas cat and American mink were affected by clade GR (31.6 and 49.7%, respectively). The α-variant was detected as 2.6% in cat, 4.8% in dog, 14.3% in tiger, 66.7% in gorilla, and 77.3% in lion. The highest mutations observed in mink where the substitution of D614G in spike (95.2%) and P323L in NSP12 (95.2%) protein. In dog, cat, gorilla, lion, and tiger, Y505H and Y453F were the common mutations followed by Y145del, Y144del, and V70I in S protein. We recommend vaccine provision for pet and zoo animals to reduce the chance of transmission in animals. Besides, continuous epidemiological and genomic surveillance of coronaviruses in animal host is crucial to find out the immediate ancestor of SARS-CoV-2 and to prevent future CoVs threats to humans.


Author(s):  
Abhishek Mishra ◽  
Anja Forche ◽  
Matthew Z. Anderson

While most fungi have the ability to reproduce sexually, multiple independent lineages have lost meiosis and developed parasexual cycles in its place. Emergence of parasexual cycles is particularly prominent in medically relevant fungi from the CUG paraphyletic group of Candida species. Since the discovery of parasex in C. albicans roughly two decades ago, it has served as the model for Candida species. Importantly, parasex in C. albicans retains hallmarks of meiosis including genetic recombination and chromosome segregation, making it a potential driver of genetic diversity. Furthermore, key meiotic genes play similar roles in C. albicans parasex and highlights parallels between these processes. Yet, the evolutionary role of parasex in Candida adaptation and the extent of resulting genotypic and phenotypic diversity remain as key knowledge gaps in this facultative reproductive program. Here, we present our current understanding of parasex, the mechanisms governing its regulation, and its relevance to Candida biology.


Sign in / Sign up

Export Citation Format

Share Document