scholarly journals The HSA Domain of BRG1 Mediates Critical Interactions Required for Glucocorticoid Receptor-Dependent Transcriptional Activation In Vivo

2007 ◽  
Vol 28 (4) ◽  
pp. 1413-1426 ◽  
Author(s):  
Kevin W. Trotter ◽  
Hua-Ying Fan ◽  
Melissa L. Ivey ◽  
Robert E. Kingston ◽  
Trevor K. Archer

ABSTRACT The packaging of eukaryotic DNA into chromatin can create an impediment to transcription by hindering binding of essential factors required for transcription. The mammalian SWI/SNF remodeling complex has been shown to alter local chromatin structure and facilitate recruitment of transcription factors. BRG1 (or hBrm), the central ATPase of the human SWI/SNF complex, is a critical factor for the functional activity of nuclear receptor complexes. Analysis using BRG1/SNF2h chimeras suggests BRG1 may contain previously uncharacterized functional motifs important for SWI/SNF. To identify these regions, BRG1 truncation and deletion mutants were designed, characterized, and utilized in a series of assays to evaluate transcriptional activation and chromatin remodeling by the glucocorticoid receptor. We identified a domain within the N terminus of BRG1 that mediates critical protein interactions within SWI/SNF. We find the HSA domain of BRG1 is required to mediate the interaction with BAF250a/ARID1A and show this association is necessary for transcriptional activation from chromatin mouse mammary tumor virus or endogenous promoters in vivo. These studies suggest BAF250a is a necessary facilitator of BRG1-mediated chromatin remodeling required for SWI/SNF-dependent transcriptional activation.

2000 ◽  
Vol 20 (23) ◽  
pp. 8879-8888 ◽  
Author(s):  
Zuqin Nie ◽  
Yutong Xue ◽  
Dafeng Yang ◽  
Sharleen Zhou ◽  
Bonnie J. Deroo ◽  
...  

ABSTRACT The SWI/SNF family of chromatin-remodeling complexes facilitates gene activation by assisting transcription machinery to gain access to targets in chromatin. This family includes BAF (also called hSWI/SNF-A) and PBAF (hSWI/SNF-B) from humans and SWI/SNF and Rsc fromSaccharomyces cerevisiae. However, the relationship between the human and yeast complexes is unclear because all human subunits published to date are similar to those of both yeast SWI/SNF and Rsc. Also, the two human complexes have many identical subunits, making it difficult to distinguish their structures or functions. Here we describe the cloning and characterization of BAF250, a subunit present in human BAF but not PBAF. BAF250 contains structural motifs conserved in yeast SWI1 but not in any Rsc components, suggesting that BAF is related to SWI/SNF. BAF250 is also a homolog of the Drosophila melanogaster Osa protein, which has been shown to interact with a SWI/SNF-like complex in flies. BAF250 possesses at least two conserved domains that could be important for its function. First, it has an AT-rich DNA interaction-type DNA-binding domain, which can specifically bind a DNA sequence known to be recognized by a SWI/SNF family-related complex at the β-globin locus. Second, BAF250 stimulates glucocorticoid receptor-dependent transcriptional activation, and the stimulation is sharply reduced when the C-terminal region of BAF250 is deleted. This region of BAF250 is capable of interacting directly with the glucocorticoid receptor in vitro. Our data suggest that BAF250 confers specificity to the human BAF complex and may recruit the complex to its targets through either protein-DNA or protein-protein interactions.


2001 ◽  
Vol 21 (16) ◽  
pp. 5417-5425 ◽  
Author(s):  
Rabindra N. Bhattacharjee ◽  
Geoffrey C. Banks ◽  
Kevin W. Trotter ◽  
Huay-Leng Lee ◽  
Trevor K. Archer

ABSTRACT Transcriptional activation of the mouse mammary tumor virus (MMTV) promoter by ligand-bound glucocorticoid receptor (GR) is transient. Previously, we demonstrated that prolonged hormone exposure results in displacement of the transcription factor nuclear factor 1 (NF1) and the basal transcription complex from the promoter, the dephosphorylation of histone H1, and the establishment of a repressive chromatin structure. We have explored the mechanistic link between histone H1 dephosphorylation and silencing of the MMTV promoter by describing the putative kinase responsible for H1 phosphorylation. Both in vitro kinase assays and in vivo protein expression studies suggest that in hormone-treated cells the ability of cdk2 to phosphorylate histone H1 is decreased and the cdk2 inhibitory p21 protein level is increased. To address the role of cdk2 and histone H1 dephosphorylation in the silencing of the MMTV promoter, we used potent cdk2 inhibitors, Roscovitine and CVT-313, to generate an MMTV promoter which is associated predominantly with the dephosphorylated form of histone H1. Both Roscovitine and CVT-313 block phosphorylation of histone H1 and, under these conditions, the GR is unable to remodel chromatin, recruit transcription factors to the promoter, or stimulate MMTV mRNA accumulation. These results suggest a model where cdk2-directed histone H1 phosphorylation is a necessary condition to permit GR-mediated chromatin remodeling and activation of the MMTV promoter in vivo.


2004 ◽  
Vol 24 (8) ◽  
pp. 3347-3358 ◽  
Author(s):  
Kevin W. Trotter ◽  
Trevor K. Archer

ABSTRACT We developed a model system to study glucocorticoid receptor (GR)-mediated chromatin remodeling by the BRG1 complex. Introduction of the BRG1 ATPase into the SW-13 cell line initiates the formation of a functional remodeling complex. This complex is able to induce transcriptional activation from a transiently transfected promoter with wild-type and chromatin-remodeling-deficient BRG1 mutants, suggesting that the complex possesses a coactivator function independent from remodeling. Transactivation from a chromatin template requires the BRG1 remodeling function, which induces regions of hypersensitivity and transcription factor loading onto the integrated MMTV promoter. We report that BRG1 remodeling activity is required for GR-mediated transactivation and that this activity cannot be replaced by other ATP-dependent remodeling proteins. Further characterization of the BRG1-associated factors (BAFs) present in these cells (for example, the expression of BAF250 but not BAF180) reveals that the BAF complex rather than the polybromo-associated BAF complex is the necessary and sufficient chromatin-remodeling component with which the receptor functions in vivo. These results in conjunction with previous findings demonstrate that the GR functions with multiple forms of the SWI/SNF complex in vivo.


2002 ◽  
Vol 22 (10) ◽  
pp. 3255-3263 ◽  
Author(s):  
Terace M. Fletcher ◽  
Nianqing Xiao ◽  
Gisele Mautino ◽  
Christopher T. Baumann ◽  
Ronald Wolford ◽  
...  

ABSTRACT Chromatin remodeling by the glucocorticoid receptor (GR) is associated with activation of transcription at the mouse mammary tumor virus (MMTV) promoter. We reconstituted this nucleoprotein transition with chromatin assembled on MMTV DNA. The remodeling event was ATP dependent and required either a nuclear extract from HeLa cells or purified human Swi/Snf. Through the use of a direct interaction assay (magnetic bead pull-down), we demonstrated recruitment of human Swi/Snf to MMTV chromatin by GR. Unexpectedly, we found that GR is actively displaced from the chromatin template during the remodeling process. ATP-dependent GR displacement was reversed by the addition of apyrase and was specific to chromatin templates. The disengagement reaction could also be induced with purified human Swi/Snf. Although GR apparently dissociated during chromatin remodeling by Swi/Snf, it participated in binding of the secondary transcription factor, nuclear factor 1. These results are paralleled by a recent discovery that the hormone-occupied receptor undergoes rapid exchange between chromatin and the nucleoplasmic compartment in living cells. Both the in vitro and in vivo results are consistent with a dynamic model (hit and run) in which GR first binds to chromatin after ligand activation, recruits a remodeling activity, facilitates transcription factor binding, and is simultaneously lost from the template.


Sign in / Sign up

Export Citation Format

Share Document