chromatin remodeling complexes
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 80)

H-INDEX

56
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Rodrigo Orlandini de Castro ◽  
Luciana Previato ◽  
Agustin Carbajal ◽  
Victor Goitea ◽  
Courtney T. Griffin ◽  
...  

Abstract Testis development and sustained germ cell production in adults rely on the establishment and maintenance of spermatogonia stem cells and their proper differentiation into spermatocytes. Chromatin remodeling complexes regulate critical processes during gamete development by restricting or promoting accessibility of DNA repair and gene expression machineries to the chromatin. Here, we investigated the role of CHD4 and CHD3 catalytic subunits of the NURD complex during spermatogenesis. Germ cell-specific deletion of Chd4 early in gametogenesis, but not Chd3, resulted in arrested early gamete development due to failed cell survival of neonate undifferentiated spermatogonia stem cell population. Candidate assessment revealed that CHD4 controls expression of Dmrt1 and its downstream target Plzf, both described as prominent regulators of spermatogonia stem cell maintenance. Our results show the requirement of CHD4 in mammalian gametogenesis pointing to functions in gene expression early in the process.


2022 ◽  
Vol 119 (1) ◽  
pp. e2110812119
Author(s):  
Nasiha S. Ahmed ◽  
Jovylyn Gatchalian ◽  
Josephine Ho ◽  
Mannix J. Burns ◽  
Nasun Hah ◽  
...  

Macrophages induce a number of inflammatory response genes in response to stimulation with microbial ligands. In response to endotoxin Lipid A, a gene-activation cascade of primary followed by secondary-response genes is induced. Epigenetic state is an important regulator of the kinetics, specificity, and mechanism of gene activation of these two classes. In particular, SWI/SNF chromatin-remodeling complexes are required for the induction of secondary-response genes, but not primary-response genes, which generally exhibit open chromatin. Here, we show that a recently discovered variant of the SWI/SNF complex, the noncanonical BAF complex (ncBAF), regulates secondary-response genes in the interferon (IFN) response pathway. Inhibition of bromodomain-containing protein 9 (BRD9), a subunit of the ncBAF complex, with BRD9 bromodomain inhibitors (BRD9i) or a degrader (dBRD9) led to reduction in a number of interferon-stimulated genes (ISGs) following stimulation with endotoxin lipid A. BRD9-dependent genes overlapped highly with a subset of genes differentially regulated by BET protein inhibition with JQ1 following endotoxin stimulation. We find that the BET protein BRD4 is cobound with BRD9 in unstimulated macrophages and corecruited upon stimulation to ISG promoters along with STAT1, STAT2, and IRF9, components of the ISGF3 complex activated downstream of IFN-alpha receptor stimulation. In the presence of BRD9i or dBRD9, STAT1-, STAT2-, and IRF9-binding is reduced, in some cases with reduced binding of BRD4. These results demonstrate a specific role for BRD9 and the ncBAF complex in ISG activation and identify an activity for BRD9 inhibitors and degraders in dampening endotoxin- and IFN-dependent gene expression.


Author(s):  
Roberto Amigo ◽  
Carlos Farkas ◽  
Cristian Gidi ◽  
Matias I. Hepp ◽  
Natalia Cartes ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anne Helness ◽  
Jennifer Fraszczak ◽  
Charles Joly-Beauparlant ◽  
Halil Bagci ◽  
Christian Trahan ◽  
...  

AbstractGrowth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding protein 4 (CHD4) and other components of the Nucleosome remodeling and deacetylase (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes regulated by active or bivalent promoters and enhancers. GFI1 and GFI1/CHD4 complexes occupy promoters that are either enriched for IRF1 or SPI1 consensus binding sites, respectively. During neutrophil differentiation, chromatin closure and depletion of H3K4me2 occurs at different degrees depending on whether GFI1, CHD4 or both are present, indicating that GFI1 is more efficient in depleting of H3K4me2 and -me1 marks when associated with CHD4. Our data suggest that GFI1/CHD4 complexes regulate histone modifications differentially to enable regulation of target genes affecting immune response, nucleosome organization or cellular metabolic processes and that both the target gene specificity and the activity of GFI1 during myeloid differentiation depends on the presence of chromatin remodeling complexes.


Author(s):  
Yanan Li ◽  
Han Gong ◽  
Pan Wang ◽  
Yu Zhu ◽  
Hongling Peng ◽  
...  

AbstractDisordered chromatin remodeling regulation has emerged as an essential driving factor for cancers. Imitation switch (ISWI) family are evolutionarily conserved ATP-dependent chromatin remodeling complexes, which are essential for cellular survival and function through multiple genetic and epigenetic mechanisms. Omics sequencing and a growing number of basic and clinical studies found that ISWI family members displayed widespread gene expression and genetic status abnormalities in human cancer. Their aberrant expression is closely linked to patient outcome and drug response. Functional or componential alteration in ISWI-containing complexes is critical for tumor initiation and development. Furthermore, ISWI-non-coding RNA regulatory networks and some non-coding RNAs derived from exons of ISWI member genes play important roles in tumor progression. Therefore, unveiling the transcriptional regulation mechanism underlying ISWI family sparked a booming interest in finding ISWI-based therapies in cancer. This review aims at describing the current state-of-the-art in the role of ISWI subunits and complexes in tumorigenesis, tumor progression, immunity and drug response, and presenting deep insight into the physiological and pathological implications of the ISWI transcription machinery in cancers.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Dantong Sun ◽  
Fei Teng ◽  
Puyuan Xing ◽  
Junling Li

AbstractARID1A is a key component of the SWI/SNF chromatin remodeling complexes which is important for the maintaining of biological processes of cells. Recent studies had uncovered the potential role of ARID1A alterations or expression loss in the therapeutic sensitivity of cancers, but the studies in this field requires to be further summarized and discussed. Therefore, we proposed a series of mechanisms related to the resistance to EGFR-TKIs induced by ARID1A alterations or expression loss and the potential therapeutic strategies to overcome the resistance based on published studies. It suggested that ARID1A alterations or expression loss might be the regulators in PI3K/Akt, JAK/STAT and NF-κB signaling pathways which are strongly associated with the resistance to EGFR-TKIs in NSCLC patients harboring sensitive EGFR mutations. Besides, ARID1A alterations or expression loss could lead to the resistance to EGFR-TKIs via a variety of processes during the tumorigenesis and development of cancers, including epithelial to mesenchymal transition, angiogenesis and the inhibition of apoptosis. Based on the potential mechanisms related to ARID1A, we summarized that the small molecular inhibitors targeting ARID1A or PI3K/Akt pathway, the anti-angiogenic therapy and immune checkpoint inhibitors could be used for the supplementary treatment for EGFR-TKIs among NSCLC patients harboring the concomitant alterations of sensitive EGFR mutations and ARID1A.


2021 ◽  
Vol 11 ◽  
Author(s):  
Shouying Xu ◽  
Chao Tang

Genes encoding subunits of SWItch/Sucrose Non-Fermenting (SWI/SNF) chromatin remodeling complexes are collectively mutated in 20% of all human cancers, among which the AT-rich interacting domain−containing protein 1A (ARID1A, also known as BAF250a, B120, C1orf4, Osa1) that encodes protein ARID1A is the most frequently mutated, and mutations in ARID1A have been found in various types of cancer. ARID1A is thought to play a significant role both in tumor initiation and in tumor suppression, which is highly dependent upon context. Recent molecular mechanistic research has revealed that ARID1A participates in tumor progression through its effects on control of cell cycle, modulation of cellular functions such as EMT, and regulation of various signaling pathways. In this review, we synthesize a mechanistic understanding of the role of ARID1A in human tumor initiation as well as in tumor suppression and further discuss the implications of these new discoveries for potential cancer intervention. We also highlight the mechanisms by which mutations affecting the subunits in SWI/SNF complexes promote cancer.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 884
Author(s):  
Jean-Michel Gibert ◽  
Frédérique Peronnet

Drosophila melanogaster has played a paramount role in epigenetics, the study of changes in gene function inherited through mitosis or meiosis that are not due to changes in the DNA sequence. By analyzing simple phenotypes, such as the bristle position or cuticle pigmentation, as read-outs of regulatory processes, the identification of mutated genes led to the discovery of major chromatin regulators. These are often conserved in distantly related organisms such as vertebrates or even plants. Many of them deposit, recognize, or erase post-translational modifications on histones (histone marks). Others are members of chromatin remodeling complexes that move, eject, or exchange nucleosomes. We review the role of D. melanogaster research in three epigenetic fields: Heterochromatin formation and maintenance, the repression of transposable elements by piRNAs, and the regulation of gene expression by the antagonistic Polycomb and Trithorax complexes. We then describe how genetic tools available in D. melanogaster allowed to examine the role of histone marks and show that some histone marks are dispensable for gene regulation, whereas others play essential roles. Next, we describe how D. melanogaster has been particularly important in defining chromatin types, higher-order chromatin structures, and their dynamic changes during development. Lastly, we discuss the role of epigenetics in a changing environment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yibo Xue ◽  
Jordan L. Morris ◽  
Kangning Yang ◽  
Zheng Fu ◽  
Xianbing Zhu ◽  
...  

AbstractInactivating mutations in SMARCA4 and concurrent epigenetic silencing of SMARCA2 characterize subsets of ovarian and lung cancers. Concomitant loss of these key subunits of SWI/SNF chromatin remodeling complexes in both cancers is associated with chemotherapy resistance and poor prognosis. Here, we discover that SMARCA4/2 loss inhibits chemotherapy-induced apoptosis through disrupting intracellular organelle calcium ion (Ca2+) release in these cancers. By restricting chromatin accessibility to ITPR3, encoding Ca2+ channel IP3R3, SMARCA4/2 deficiency causes reduced IP3R3 expression leading to impaired Ca2+ transfer from the endoplasmic reticulum to mitochondria required for apoptosis induction. Reactivation of SMARCA2 by a histone deacetylase inhibitor rescues IP3R3 expression and enhances cisplatin response in SMARCA4/2-deficient cancer cells both in vitro and in vivo. Our findings elucidate the contribution of SMARCA4/2 to Ca2+-dependent apoptosis induction, which may be exploited to enhance chemotherapy response in SMARCA4/2-deficient cancers.


Sign in / Sign up

Export Citation Format

Share Document