scholarly journals The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix

1994 ◽  
Vol 14 (4) ◽  
pp. 2755-2766
Author(s):  
D G Overdier ◽  
A Porcella ◽  
R H Costa

Three distinct hepatocyte nuclear factor 3 (HNF-3) proteins (HNF-3 alpha, -3 beta, and -3 gamma) are known to regulate the transcription of liver-specific genes. The HNF-3 proteins bind to DNA as a monomer through a modified helix-turn-helix, known as the winged helix motif, which is also utilized by a number of developmental regulators, including the Drosophila homeotic forkhead (fkh) protein. We have previously described the isolation, from rodent tissue, of an extensive family of tissue-specific HNF-3/fkh homolog (HFH) genes sharing homology in their winged helix motifs. In this report, we have determined the preferred DNA-binding consensus sequence for the HNF-3 beta protein as well as for two divergent family members, HFH-1 and HFH-2. We show that these HNF-3/fkh proteins bind to distinct DNA sites and that the specificity of protein recognition is dependent on subtle nucleotide alterations in the site. The HNF-3, HFH-1, and HFH-2 consensus binding sequences were also used to search DNA regulatory regions to identify potential target genes. Furthermore, an analysis of the DNA-binding properties of a series of HFH-1/HNF-3 beta protein chimeras has allowed us to identify a 20-amino-acid region, located adjacent to the DNA recognition helix, which contributes to DNA-binding specificity. These sequences are not involved in base-specific contacts and include residues which diverge within the HNF-3/fkh family. Replacement of this 20-amino-acid region in HNF-3 beta with corresponding residues from HFH-1 enabled the HNF-3 beta recognition helix to bind only HFH-1-specific DNA-binding sites. We propose a model in which this 20-amino-acid flanking region influences the DNA-binding properties of the recognition helix.

1994 ◽  
Vol 14 (4) ◽  
pp. 2755-2766 ◽  
Author(s):  
D G Overdier ◽  
A Porcella ◽  
R H Costa

Three distinct hepatocyte nuclear factor 3 (HNF-3) proteins (HNF-3 alpha, -3 beta, and -3 gamma) are known to regulate the transcription of liver-specific genes. The HNF-3 proteins bind to DNA as a monomer through a modified helix-turn-helix, known as the winged helix motif, which is also utilized by a number of developmental regulators, including the Drosophila homeotic forkhead (fkh) protein. We have previously described the isolation, from rodent tissue, of an extensive family of tissue-specific HNF-3/fkh homolog (HFH) genes sharing homology in their winged helix motifs. In this report, we have determined the preferred DNA-binding consensus sequence for the HNF-3 beta protein as well as for two divergent family members, HFH-1 and HFH-2. We show that these HNF-3/fkh proteins bind to distinct DNA sites and that the specificity of protein recognition is dependent on subtle nucleotide alterations in the site. The HNF-3, HFH-1, and HFH-2 consensus binding sequences were also used to search DNA regulatory regions to identify potential target genes. Furthermore, an analysis of the DNA-binding properties of a series of HFH-1/HNF-3 beta protein chimeras has allowed us to identify a 20-amino-acid region, located adjacent to the DNA recognition helix, which contributes to DNA-binding specificity. These sequences are not involved in base-specific contacts and include residues which diverge within the HNF-3/fkh family. Replacement of this 20-amino-acid region in HNF-3 beta with corresponding residues from HFH-1 enabled the HNF-3 beta recognition helix to bind only HFH-1-specific DNA-binding sites. We propose a model in which this 20-amino-acid flanking region influences the DNA-binding properties of the recognition helix.


2007 ◽  
Vol 101 (10) ◽  
pp. 1483-1491 ◽  
Author(s):  
Konstantina Karidi ◽  
Jan Reedijk ◽  
Nick Hadjiliadis ◽  
Achilleas Garoufis

2011 ◽  
Vol 435 (1) ◽  
pp. 143-155 ◽  
Author(s):  
Ivana L. Viola ◽  
Nora G. Uberti Manassero ◽  
Rodrigo Ripoll ◽  
Daniel H. Gonzalez

The TCP domain is a DNA-binding domain present in plant transcription factors that modulate different processes. In the present study, we show that Arabidopsis class I TCP proteins are able to interact with a dyad-symmetric sequence composed of two GTGGG half-sites. TCP20 establishes symmetric interactions with the 5′ half of each strand, whereas TCP11 interacts mainly with the 3′ half. SELEX (systematic evolution of ligands by exponential enrichment) experiments with TCP15 and TCP20 indicated that these proteins have similar, although not identical, DNA-binding preferences and are able to interact with non-palindromic binding sites of the type GTGGGNCCNN. TCP11 shows a different DNA-binding specificity, with a preference for the sequence GTGGGCCNNN. The distinct DNA-binding properties of TCP11 are due to the presence of a threonine residue at position 15 of the TCP domain, a position that is occupied by an arginine residue in most TCP proteins. TCP11 also forms heterodimers with TCP15 that have increased DNA-binding efficiency. The expression in plants of a repressor form of TCP11 demonstrated that this protein is a developmental regulator that influences the growth of leaves, stems and petioles, and pollen development. The results suggest that changes in DNA-binding preferences may be one of the mechanisms through which class I TCP proteins achieve functional specificity.


1994 ◽  
Vol 14 (9) ◽  
pp. 6046-6055
Author(s):  
M Tanaka ◽  
W M Clouston ◽  
W Herr

The B-cell POU homeodomain protein Oct-2 contains two transcriptional activation domains, one N terminal and the other C terminal of the central DNA-binding POU domain. The synergistic action of these two activation domains makes Oct-2 a more potent activator of mRNA promoters than the related broadly expressed octamer motif-binding protein Oct-1, which contains an N-terminal but not a C-terminal Oct-2-like activation domain. Both Oct-2 mRNA promoter activation domains were delineated by truncation analysis: the N-terminal Q domain is a 66-amino-acid region rich in glutamines, and the C-terminal P domain is a 42-amino-acid region rich in prolines. The Q and P domains synergized with each other or duplicates of themselves, independently of their N-terminal or C-terminal position relative to the POU domain. The C-terminal P domain, which differentiates Oct-2 from Oct-1, also activated transcription in conjunction with the heterologous GAL4 DNA-binding domain. Oct-2 thus contains three modular functional units, the DNA-binding POU domain and the two P and Q activation domains. An electrophoretic mobility shift assay with a variety of these Oct-2 activators revealed a distinct complex called QA that was dependent on the presence of an active glutamine-rich activation domain and migrated more slowly than the Oct-2-DNA complexes. Formation of the QA complex is consistent with interaction of the glutamine-rich activation domains with a regulatory protein important for the process of transcriptional activation.


2014 ◽  
Vol 289 (21) ◽  
pp. 14682-14691 ◽  
Author(s):  
Hem Moktan ◽  
Michel F. Guiraldelli ◽  
Craig A. Eyster ◽  
Weixing Zhao ◽  
Chih-Ying Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document