meiotic recombination
Recently Published Documents


TOTAL DOCUMENTS

1258
(FIVE YEARS 189)

H-INDEX

88
(FIVE YEARS 9)

2022 ◽  
Vol 8 (2) ◽  
Author(s):  
Hui Ma ◽  
Tao Li ◽  
Xuefeng Xie ◽  
Long Jiang ◽  
Jingwei Ye ◽  
...  

RAD51AP2 is required specifically for efficient meiotic recombination to form crossover between X and Y chromosomes.


2022 ◽  
Author(s):  
Qichao Lian ◽  
Victor Solier ◽  
Birgit Walkemeier ◽  
Bruno Huettel ◽  
Korbinian Schneeberger ◽  
...  

Meiotic recombination frequency varies along chromosomes and strongly correlates with sequence divergence. However, the causality underlying this correlation is unclear. To untangle the relationship between recombination landscapes and polymorphisms, we characterized the genome-wide recombination landscape in the absence of polymorphisms, using Arabidopsis thaliana homozygous inbred lines in which a few hundred genetic markers were introduced through mutagenesis. We found that megabase-scale recombination landscapes in inbred lines are strikingly similar to the recombination landscapes in hybrids, with the sole exception of heterozygous large rearrangements where recombination is prevented locally. In addition, we found that the megabase-scale recombination landscape can be accurately predicted by chromatin features. Our results show that polymorphisms are not causal for the shape of the megabase-scale recombination landscape, rather, favor alternative models in which recombination and chromatin shape sequence divergence across the genome.


Genetics ◽  
2021 ◽  
Author(s):  
Karen Voelkel-Meiman ◽  
Ashwini Oke ◽  
Arden Feil ◽  
Alexander Shames ◽  
Jennifer Fung ◽  
...  

Abstract A large subset of meiotic recombination intermediates form within the physical context of synaptonemal complex (SC), but the functional relationship between SC structure and homologous recombination remains obscure. Our prior analysis of strains deficient for SC central element proteins demonstrated that tripartite SC is dispensable for interhomolog recombination in S. cerevisiae. Here we report that while dispensable for recombination per se, SC proteins promote efficient mismatch repair at interhomolog recombination sites. Failure to repair mismatches within heteroduplex-containing meiotic recombination intermediates leads to genotypically sectored colonies (post meiotic segregation events). We discovered increased post-meiotic segregation at THR1 in cells lacking Ecm11 or Gmc2, or in the SC-deficient but recombination-proficient zip1[Δ21-163] mutant. High-throughput sequencing of octad meiotic products furthermore revealed a genome-wide increase in recombination events with unrepaired mismatches in ecm11 mutants relative to wild type. Meiotic cells missing Ecm11 display longer gene conversion tracts, but tract length alone does not account for the higher frequency of unrepaired mismatches. Interestingly, the per-nucleotide mismatch frequency is elevated in ecm11 when analyzing all gene conversion tracts, but is similar between wild type and ecm11 if considering only those events with unrepaired mismatches. Thus, in both wild type and ecm11 strains a subset of recombination events is susceptible to a similar degree of inefficient mismatch repair, but in ecm11 mutants a larger fraction of events fall into this inefficient repair category. Finally, we observe elevated post-meiotic segregation at THR1 in mutants with a dual deficiency in MutSγ crossover recombination and SC assembly, but not in the mlh3 mutant, which lacks MutSγ crossovers but has abundant SC. We propose that SC structure promotes efficient mismatch repair of joint molecule recombination intermediates, and that absence of SC is the molecular basis for elevated post-meiotic segregation in both MutSγ crossover-proficient (ecm11, gmc2) and MutSγ crossover-deficient (msh4, zip3) strains.


2021 ◽  
Author(s):  
Fabien Dutreux ◽  
Abhishek Dutta ◽  
Emilien Peltier ◽  
Sabrina Bibi-Triki ◽  
Anne Friedrich ◽  
...  

Meiotic recombination has been deeply characterized in a few model species only, notably in the budding yeast Saccharomyces cerevisiae. Interestingly, most members of the ZMM pathway that implements meiotic crossover interference in S. cerevisiae have been lost in Lachancea yeast species after the divergence of Lachancea kluyveri from the rest of the clade. This suggests major differences in the control of crossover distribution. After investigating meiosis in L. kluyveri, we determined the meiotic recombination landscape of Lachancea waltii and identified several characteristics that should help understand better the underlying mechanisms. Such characteristics include systematic regions of loss of heterozygosity (LOH) in L. waltii hybrids, compatible with dysregulated Spo11-mediated DNA double strand breaks (DSB) independently of meiosis. They include a higher recombination rate in L. waltii than in L. kluyveri despite the lack of multiple ZMM pro-crossover factors. L. waltii exhibits an elevated frequency of zero-crossover bivalents as L. kluyveri but opposite to S. cerevisiae. L. waltii gene conversion tracts lengths are comparable to those observed in S. cerevisiae and shorter than in L. kluyveri despite the lack of Mlh2, a factor limiting conversion tracts size in S. cerevisiae. L. waltii recombination hotspots are not shared with either S. cerevisiae or L. kluyveri, showing that meiotic recombination hotspots can evolve at a rather limited evolutionary scale within budding yeasts. Finally, in line with the loss of several ZMM genes, we found only residual crossover interference in L. waltii likely coming from the modest interference existing between recombination precursors.


Genetics ◽  
2021 ◽  
Author(s):  
Reine U Protacio ◽  
Tresor O Mukiza ◽  
Mari K Davidson ◽  
Wayne P Wahls

Abstract It has long been known (circa 1917) that environmental conditions, as well as speciation, can affect dramatically the frequency distribution of Spo11/Rec12-dependent meiotic recombination. Here, by analyzing DNA sequence-dependent meiotic recombination hotspots in the fission yeast Schizosaccharomyces pombe, we reveal a molecular basis for these phenomena. The impacts of changing environmental conditions (temperature, nutrients, osmolarity) on local rates of recombination are mediated directly by DNA site-dependent hotspots (M26, CCAAT, Oligo-C). This control is exerted through environmental condition-responsive signal transduction networks (involving Atf1, Pcr1, Php2, Php3, Php5, Rst2). Strikingly, individual hotspots modulate rates of recombination over a very broad dynamic range in response to changing conditions. They can range from being quiescent to being highly proficient at promoting activity of the basal recombination machinery (Spo11/Rec12 complex). Moreover, each different class of hotspot functions as an independently controlled rheostat; a condition that increases the activity of one class can decrease the activity of another class. Together, the independent modulation of recombination rates by each different class of DNA site-dependent hotspots (of which there are many) provides a molecular mechanism for highly dynamic, large-scale changes in the global frequency distribution of meiotic recombination. Because hotspot-activating DNA sites discovered in fission yeast are conserved functionally in other species, this process can also explain the previously enigmatic, Prdm9-independent, evolutionarily rapid changes in hotspot usage between closely related species, subspecies, and isolated populations of the same species.


2021 ◽  
Author(s):  
Takeshi Sakuno ◽  
Sanki Tashiro ◽  
Hideki Tanizawa ◽  
Osamu Iwasaki ◽  
Da-Qiao Ding ◽  
...  

During meiotic prophase, cohesin-dependent axial structures are formed in the synaptonemal complex (SC). However, the functional correlation between these structures and cohesion remains elusive. Here, we examined the formation of the cohesin-dependent axial structure in fission yeast, which forms atypical SCs composed of linear elements (LinEs) resembling the lateral elements of SC but lacking the central elements. The results demonstrated that Rec8 cohesin is crucial for the formation of the loop-axis structure within the atypical SC. Furthermore, the Rec8-mediated loop-axis structure is formed in the absence of LinEs and provides a structural platform for aligning homologous chromosomes. We also identified a rec8 mutant that lost the ability to assemble the loop-axis structure without losing cohesion. Remarkably, this mutant showed defects in the LinE assembly, resulting in a significant reduction in meiotic recombination. Collectively, our results demonstrate an essential role for the Rec8-dependent loop-axis structure in LinE assembly, facilitating meiotic recombination.


Cell Reports ◽  
2021 ◽  
Vol 37 (10) ◽  
pp. 110097
Author(s):  
Xuan Yang ◽  
Binyuan Zhai ◽  
Shunxin Wang ◽  
Xiangfei Kong ◽  
Yingjin Tan ◽  
...  

Author(s):  
Karl W Broman

Abstract A common step in the analysis of multi-parent populations is genotype reconstruction: identifying the founder origin of haplotypes from dense marker data. This process often makes use of a probability model for the pattern of founder alleles along chromosomes, including the relative frequency of founder alleles and the probability of exchanges among them, which depend on a model for meiotic recombination and on the mating design for the population. While the precise experimental design used to generate the population may be used to derive a precise characterization of the model for exchanges among founder alleles, this can be tedious, particularly given the great variety of experimental designs that have been proposed. We describe an approximate model that can be applied for a variety of multi-parent populations. We have implemented the approach in the R/qtl2 software, and we illustrate its use in applications to publicly-available data on Diversity Outbred and Collaborative Cross mice.


Genetics ◽  
2021 ◽  
Author(s):  
Angela Belmonte Tebar ◽  
Estefania San Martin Perez ◽  
Syong Hyun Nam-Cha ◽  
Ana Josefa Soler Valls ◽  
Nadia D Singh ◽  
...  

Abstract Meiotic recombination is a critical process for sexually reproducing organisms. This exchange of genetic information between homologous chromosomes during meiosis is important not only because it generates genetic diversity, but also because it is often required for proper chromosome segregation. Consequently, the frequency and distribution of crossovers are tightly controlled to ensure fertility and offspring viability. However, in many systems it has been shown that environmental factors can alter the frequency of crossover events. Two studies in flies and yeast point to nutritional status affecting the frequency of crossing over. However, this question remains unexplored in mammals. Here we test how crossover frequency varies in response to diet in Mus musculus males. We use immunohistochemistry to estimate crossover frequency in multiple genotypes under two diet treatments. Our results indicate that while crossover frequency was unaffected by diet in some strains, other strains were sensitive even to small composition changes between two common laboratory chows. Therefore, recombination is both resistant and sensitive to certain dietary changes in a strain-dependent manner and, hence, this response is genetically determined. Our study is the first to report a nutrition effect on genome-wide levels of recombination. Moreover, our work highlights the importance of controlling diet in recombination studies and may point to diet as a potential source of variability among studies, which is relevant for reproducibility.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Simone Mozzachiodi ◽  
Lorenzo Tattini ◽  
Agnes Llored ◽  
Agurtzane Irizar ◽  
Neža Škofljanc ◽  
...  

AbstractHybrids between diverged lineages contain novel genetic combinations but an impaired meiosis often makes them evolutionary dead ends. Here, we explore to what extent an aborted meiosis followed by a return-to-growth (RTG) promotes recombination across a panel of 20 Saccharomyces cerevisiae and S. paradoxus diploid hybrids with different genomic structures and levels of sterility. Genome analyses of 275 clones reveal that RTG promotes recombination and generates extensive regions of loss-of-heterozygosity in sterile hybrids with either a defective meiosis or a heavily rearranged karyotype, whereas RTG recombination is reduced by high sequence divergence between parental subgenomes. The RTG recombination preferentially arises in regions with low local heterozygosity and near meiotic recombination hotspots. The loss-of-heterozygosity has a profound impact on sexual and asexual fitness, and enables genetic mapping of phenotypic differences in sterile lineages where linkage analysis would fail. We propose that RTG gives sterile yeast hybrids access to a natural route for genome recombination and adaptation.


Sign in / Sign up

Export Citation Format

Share Document