pou domain
Recently Published Documents


TOTAL DOCUMENTS

329
(FIVE YEARS 31)

H-INDEX

63
(FIVE YEARS 2)

2022 ◽  
pp. 1-5
Author(s):  
Sanam Safi ◽  
Stephen P. Sanders ◽  
Melissa Zhao ◽  
Chrystalle Katte Carreon

Abstract A maternally inherited novel pathogenic non-POU domain-containing octamer-binding gene variant c.767G>T, p.R256I [NM_001145408], manifested in a male infant as dilated cardiomyopathy with severe left ventricular dysfunction and dilation, biventricular non-compaction, tricuspid hypoplasia, and hydrocephaly. To the best of our knowledge, no previous non-POU domain-containing octamer-binding gene variants with biventricular non-compaction have been associated with tricuspid valve hypoplasia. Hence, this case introduces a new pathogenic variant observed in the non-POU domain-containing octamer-binding gene and adds to the range of cardiac phenotypes identified in non-POU domain-containing octamer-binding gene variants.


Oncogene ◽  
2022 ◽  
Author(s):  
Jinguan Lin ◽  
Longzheng Xia ◽  
Linda Oyang ◽  
Jiaxin Liang ◽  
Shiming Tan ◽  
...  

AbstractCancer metabolic reprogramming enhances its malignant behaviors and drug resistance, which is regulated by POU domain transcription factors. This study explored the effect of POU domain class 2 transcription factor 1 (POU2F1) on metabolic reprogramming in colon cancer. The POU2F1 expression was analyzed in GEO dataset, TCGA cohorts and human colon cancer tissues by bioinformatics and immunohistochemistry. The effects of altered POU2F1 expression on proliferation, glucose metabolism and oxaliplatin sensitivity of colon cancer cells were tested. The impacts of POU2F1 on aldolase A (ALDOA) expression and malignant behaviors of colon cancer cells were examined. We found that up-regulated POU2F1 expression was associated with worse prognosis and oxaliplatin resistance in colon cancer. POU2F1 enhanced the proliferation, aerobic glycolysis and the pentose phosphate pathway (PPP) activity, but reduced oxidative stress and apoptosis in colon cancer cells, dependent on up-regulating ALDOA expression. Mechanistically, POU2F1 directly bound to the ALDOA promoter to enhance the ALDOA promoter activity in colon cancer cells. Moreover, activation of the POU2F1-ALDOA axis decreased the sensitivity to oxaliplatin in colon cancer cells. These data indicate that the POU2F1-ALDOA axis promotes the progression and oxaliplatin resistance by enhancing metabolic reprogramming in colon cancer. Our findings suggest that the POU2F1-ALDOA axis may be new therapeutic targets to overcome oxaliplatin resistance in colon cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jixu Wang ◽  
Ke Xiao ◽  
Futao Hou ◽  
Lusheng Tang ◽  
Dan Luo ◽  
...  

POU domain, class 2, transcription factor 1 (POU2F1) is involved in the development of gastric cancer (GC). However, the molecular mechanism has not been fully elucidated. Here, we identified a novel lncRNA named TTC3-AS1 that was potentially regulated by POU2F1 and investigated their roles in GC progression. Bioinformatics analysis suggested that high expression of POU2F1 predicted poor prognosis in patients with GC. We further screened out an lncRNA TTC3-AS1 that may be transcriptionally activated by POU2F1 according to the JASPAR database, and POU2F1 and TTC3-AS1 were highly expressed in GC cells and tissues compared with normal controls (NCs). Function analysis revealed that both POU2F1 and TTC3-AS1 played oncogenic roles by promoting cell viability, migration, and invasion in GC. qRT-PCR analysis showed that POU2F1 improved the expression of TTC3-AS1 in GC cells, while TTC3-AS1 knockdown or overexpression had no effect on POU2F1 expression. The results of chromatin immunoprecipitation and DNA-affinity precipitation assays indicated that POU2F1 directly bound to the promoter region of TTC3-AS1 and activated its transcription. TTC3-AS1 knockdown neutralized the protumor effects of POU2F1 overexpression in GC cell lines as well as mouse models of GC, which suggested that TTC3-AS1 mediates the oncogenic function of POU2F1. In summary, POU2F1 promoted GC progression by transcriptionally activating TTC3-AS1; thus, this study provided a new perspective for the mechanism of GC progression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Hamm ◽  
Pierre Sohier ◽  
Valérie Petit ◽  
Jérémy H. Raymond ◽  
Véronique Delmas ◽  
...  

AbstractWhile the major drivers of melanoma initiation, including activation of NRAS/BRAF and loss of PTEN or CDKN2A, have been identified, the role of key transcription factors that impose altered transcriptional states in response to deregulated signaling is not well understood. The POU domain transcription factor BRN2 is a key regulator of melanoma invasion, yet its role in melanoma initiation remains unknown. Here, in a BrafV600EPtenF/+ context, we show that BRN2 haplo-insufficiency promotes melanoma initiation and metastasis. However, metastatic colonization is less efficient in the absence of Brn2. Mechanistically, BRN2 directly induces PTEN expression and in consequence represses PI3K signaling. Moreover, MITF, a BRN2 target, represses PTEN transcription. Collectively, our results suggest that on a PTEN heterozygous background somatic deletion of one BRN2 allele and temporal regulation of the other allele elicits melanoma initiation and progression.


2021 ◽  
Author(s):  
Michael Notaras ◽  
Aiman Lodhi ◽  
Friederike Dundar ◽  
Paul Collier ◽  
Nicole Sayles ◽  
...  

Due to an inability to ethically access developing human brain tissue as well as identify prospective cases, early-arising neurodevelopmental and cell-specific signatures of Schizophrenia (Scz) have remained unknown and thus undefined. To overcome these challenges, we utilized Scz patient-derived stem cells to generate 3D cerebral organoids to model neuropathology of Scz during this critical period. We discovered that Scz organoids exhibited ventricular neuropathology resulting in altered progenitor survival and disrupted neurogenesis. This ultimately yielded fewer neurons within developing cortical fields of Scz organoids. Single-cell sequencing revealed that Scz progenitors were specifically depleted of neuronal programming factors leading to a remodeling of cell-lineages, altered differentiation trajectories, and distorted cortical cell-type diversity. While Scz organoids were 99.95% similar in their macromolecular diversity to Ctrls, four GWAS factors (PTN, COMT, PLCL1, and PODXL) and peptide fragments belonging to the POU-domain transcription factor family (e.g. POU3F2/BRN2) were altered. This revealed that Scz organoids principally differed not in their proteomic diversity, but specifically in their total quantity of disease and neurodevelopmental factors at the molecular level. Single-cell sequencing also subsequently identified cell-type specific alterations in neuronal programming factors and growth factors, and specifically replicated the depletion of POU3F2 (BRN2) and PTN in both Scz progenitors and neurons. Consequently, in two mechanistic rescue experiments we identified that the transcription factor POU3F2 (BRN2) and growth factor PTN operate as mechanistic substrates of neurogenesis and cellular survival, respectively, in Scz organoids. This suggests that multiple mechanisms of Scz exist in patient-derived organoids, and that these disparate mechanisms converge upon primordial brain developmental pathways such as neuronal differentiation, survival, and growth factor support, which may amalgamate to elevate intrinsic risk of Scz.


Inflammation ◽  
2021 ◽  
Author(s):  
Yang Yang ◽  
Jianhua Xue ◽  
Lili Qin ◽  
Jiaxuan Zhang ◽  
Jiajia Liu ◽  
...  

Abstract Sepsis is considered to be a systemic inflammatory response, which results in organ dysfunction. LncRNA nuclear-enriched abundant transcript 1 (NEAT1) involved in sepsis progression has been reported. However, the underlying mechanism of NEAT1 in sepsis-induced inflammatory response remains to be revealed. In this study, NEAT1 and POU domain class 2 transcription factor 1 (POU2F1) were highly expressed in LPS-induced septic RAW264.7 cells, opposite to miR-31-5p expression. Furthermore, we found that NEAT1 silencing inhibited LPS-induced inflammatory response and cell proliferation, and promoted cell apoptosis. Subsequently, we found that miR-31-5p interacted with NEAT1 and targeted the 3′UTR of POU2F1, and in LPS-induced RAW264.7 cells, the inhibition of NEAT1 silencing was reversed by miR-31-5p knockdown, while POU2F1 downregulation could cover the functions of miR-31-5p knockdown. In a word, this study indicates that NEAT1 inhibits the LPS-induced progression of sepsis in RAW264.7 cells by modulating miR-31-5p/POU2F1 axis, suggesting that NEAT1 will be the potential therapeutic target for sepsis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
J Roman Arguello ◽  
Liliane Abuin ◽  
Jan Armida ◽  
Kaan Mika ◽  
Phing Chian Chai ◽  
...  

Determining the molecular properties of neurons is essential to understand their development, function and evolution. Using Targeted DamID (TaDa), we characterize RNA polymerase II occupancy and chromatin accessibility in selectedIonotropic receptor(Ir)-expressing olfactory sensory neurons inDrosophila. Although individual populations represent a minute fraction of cells, TaDa is sufficiently sensitive and specific to identify the expected receptor genes. UniqueIrexpression is not consistently associated with differences in chromatin accessibility, but rather to distinct transcription factor profiles. Genes that are heterogeneously expressed across populations are enriched for neurodevelopmental factors, and we identify functions for the POU-domain protein Pdm3 as a genetic switch of Ir neuron fate, and the atypical cadherin Flamingo in segregation of neurons into discrete glomeruli. Together this study reveals the effectiveness of TaDa in profiling rare neural populations, identifies new roles for a transcription factor and a neuronal guidance molecule, and provides valuable datasets for future exploration.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Lotte Victoria Winther Stagsted ◽  
Eoghan Thomas O'Leary ◽  
Karoline Kragh Ebbesen ◽  
Thomas Birkballe Hansen

Circular RNAs (circRNAs) represent an abundant and conserved entity of non-coding RNAs; however, the principles of biogenesis are currently not fully understood. Here, we identify two factors, splicing factor proline/glutamine rich (SFPQ) and non-POU domain-containing octamer-binding protein (NONO), to be enriched around circRNA loci. We observe a subclass of circRNAs, coined DALI circRNAs, with distal inverted Alu elements and long flanking introns to be highly deregulated upon SFPQ knockdown. Moreover, SFPQ depletion leads to increased intron retention with concomitant induction of cryptic splicing, premature transcription termination, and polyadenylation, particularly prevalent for long introns. Aberrant splicing in the upstream and downstream regions of circRNA producing exons are critical for shaping the circRNAome, and specifically, we identify missplicing in the immediate upstream region to be a conserved driver of circRNA biogenesis. Collectively, our data show that SFPQ plays an important role in maintaining intron integrity by ensuring accurate splicing of long introns, and disclose novel features governing Alu-independent circRNA production.


2020 ◽  
Vol 21 (20) ◽  
pp. 7442
Author(s):  
Carlota Suárez-Barrio ◽  
Susana del Olmo-Aguado ◽  
Eva García-Pérez ◽  
Enol Artime ◽  
María de la Fuente ◽  
...  

Purpose: The purpose of this study was to examine the effect of plasma rich in growth factors (PRGFs) under blue light conditions in an in vivo model of retinal degeneration. Methods: Male Wistar rats were exposed to dark/blue light conditions for 9 days. On day 7, right eyes were injected with saline and left eyes with PRGF. Electroretinography (ERG) and intraocular pressure (IoP) measurements were performed before and after the experiment. After sacrifice, retinal samples were collected. Hematoxylin and eosin staining was performed to analyze the structure of retinal sections. Immunofluorescence for brain-specific homeobox/POU domain protein 3A (Brn3a), choline acetyltransferase (ChAT), rhodopsin, heme oxygenase-1 (HO-1), and glial fibrillary acidic protein (GFAP) was performed to study the retinal conditions. Results: Retinal signaling measured by ERG was reduced by blue light and recovered with PRGF; however, IoP measurements did not show significant differences among treatments. Blue light reduced the expression for Brn3a, ChAT, and rhodopsin. Treatment with PRGF showed a recovery in their expressions. HO-1 and GFAP results showed that blue light increased their expression but the use of PRGF reduced the effect of light. Conclusions: Blue light causes retinal degeneration. PRGF mitigated the injury, restoring the functionality of these cells and maintaining the tissue integrity.


Sign in / Sign up

Export Citation Format

Share Document