scholarly journals Two-step activation of meiosis by the mat1 locus in Schizosaccharomyces pombe.

1995 ◽  
Vol 15 (9) ◽  
pp. 4964-4970 ◽  
Author(s):  
M Willer ◽  
L Hoffmann ◽  
U Styrkársdóttir ◽  
R Egel ◽  
J Davey ◽  
...  

The mat1 locus is a key regulator of both conjugation and meiosis in the fission yeast Schizosaccharomyces pombe. Two alternative DNA segments of this locus, mat1-P and mat1-M, specify the haploid cell types (Plus and Minus). Each segment includes two genes: mat1-P includes mat1-Pc and mat1-Pm, while mat1-M includes mat1-Mc and mat1-Mm. The mat1-Pc and mat1-Mc genes are responsible for establishing the pheromone communication system that mediates conjugation between P and M cells, while all four mat1 genes are required for meiosis in diploid P/M cells. Our understanding of the initiation of meiosis is based largely on indirect observations, and a more precise investigation of these events was required to define the interaction between the mat1 genes. Here we resolve this issue using synthetic pheromones and P/M strains with mutations in either mat1-Pc or mat1-Mc. Our results suggest a model in which the mat1 locus plays two roles in controlling meiosis. In the first instance, the mat1-Pc and mat1-Mc functions are required to produce the mating pheromones and receptors that allow the generation of a pheromone signal. This signal is required to induce the expression of mat1-Pm and mat1-Mm. This appears to be the major pheromone-dependent step in controlling meiosis since ectopic expression of these genes allows meiosis in the absence of mat1-Pc and mat1-Mc. The mat1-Pm and mat1-Mm products complete the initiation of meiosis by activating transcription of the mei3 gene.

1994 ◽  
Vol 14 (6) ◽  
pp. 3895-3905
Author(s):  
S Kjaerulff ◽  
J Davey ◽  
O Nielsen

We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M-factor. Here we describe the isolation and characterization of a third M-factor gene, mfm3. A mutant lacking all three genes fails to produce M-factor, indicating that all functional M-factor genes now have been identified. The triple mutant exhibits an absolute mating defect in M cells, a defect that is not rescued by addition of exogenous M-factor. A mutational analysis reveals that all three mfm genes contribute to the production of M-factor. Their transcription is limited to M cells and requires the mat1-Mc and ste11 gene products. Each gene is induced when the cells are starved of nitrogen and further induced by a pheromone signal. Additionally, the signal transduction machinery associated with the pheromone response is required for transcription of the mfm genes in both stimulated and unstimulated cells.


2019 ◽  
Author(s):  
Taisuke Seike ◽  
Hiromi Maekawa ◽  
Taro Nakamura ◽  
Chikashi Shimoda

AbstractIn the fission yeast Schizosaccharomyces pombe, the mating reaction is controlled by two mating pheromones, M-factor and P-factor, secreted by M- and P-type cells, respectively. M-factor is a C-terminally farnesylated lipid peptide, whereas P-factor is a simple peptide. To examine whether this chemical asymmetry in the two pheromones is essential for conjugation, we constructed a mating system in which either pheromone can stimulate both M- and P-cells, and examined whether the resulting autocrine strains can mate. Autocrine M-cells responding to M-factor successfully mated with P-factor-less P-cells, indicating that P-factor is not essential for conjugation; by contrast, autocrine P-cells responding to P-factor were unable to mate with M-factor-less M-cells. The sterility of the autocrine P-cells was completely recovered by expressing the M-factor receptor. These observations indicate that the different chemical characteristics of the two types of pheromone, a lipid and a simple peptide, are not essential; however, a lipid peptide is absolutely required for successful mating. Our findings allow us to propose a model of the differential roles of M-factor and P-factor in conjugation of S. pombe.Summary statementLipid pheromone peptides secreted locally from one cell may be concentrated at the fusion site with an opposite mating-type cell, which then polarizes to enable successful conjugation in S. pombe.


1994 ◽  
Vol 14 (6) ◽  
pp. 3895-3905 ◽  
Author(s):  
S Kjaerulff ◽  
J Davey ◽  
O Nielsen

We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M-factor. Here we describe the isolation and characterization of a third M-factor gene, mfm3. A mutant lacking all three genes fails to produce M-factor, indicating that all functional M-factor genes now have been identified. The triple mutant exhibits an absolute mating defect in M cells, a defect that is not rescued by addition of exogenous M-factor. A mutational analysis reveals that all three mfm genes contribute to the production of M-factor. Their transcription is limited to M cells and requires the mat1-Mc and ste11 gene products. Each gene is induced when the cells are starved of nitrogen and further induced by a pheromone signal. Additionally, the signal transduction machinery associated with the pheromone response is required for transcription of the mfm genes in both stimulated and unstimulated cells.


1990 ◽  
Vol 16 (6) ◽  
pp. 1887-1897 ◽  
Author(s):  
Bill S. Hansson ◽  
Gabor Sz�cs ◽  
Frank Schmidt ◽  
Wittko Francke ◽  
Christer L�fstedt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document