scholarly journals Eukaryotic Translation Initiation Factors 4G and 4A from Saccharomyces cerevisiae Interact Physically and Functionally

1999 ◽  
Vol 19 (8) ◽  
pp. 5557-5564 ◽  
Author(s):  
Carrie L. Neff ◽  
Alan B. Sachs

ABSTRACT The initiation of translation in eukaryotes requires several multisubunit complexes, including eukaryotic translation initiation factor 4F (eIF4F). In higher eukaryotes eIF4F is composed of the cap binding protein eIF4E, the adapter protein eIF4G, and the RNA-stimulated ATPase eIF4A. The association of eIF4A withSaccharomyces cerevisiae eIF4F has not yet been demonstrated, and therefore the degree to which eIF4A’s conserved function relies upon this association has remained unclear. Here we report an interaction between yeast eIF4G and eIF4A. Specifically, we found that the growth arrest phenotype associated with three temperature-sensitive alleles of yeast eIF4G2 was suppressed by excess eIF4A and that this suppression was allele specific. In addition, in vitro translation extracts derived from an eIF4G2 mutant strain could be heat inactivated, and this inactivation could be reversed upon the addition of recombinant eIF4A. Finally, in vitro binding between yeast eIF4G and eIF4A was demonstrated, as was diminished binding between mutant eIF4G2 proteins and eIF4A. In total, these data indicate that yeast eIF4G and eIF4A physically associate and that this association performs an essential function.

1991 ◽  
Vol 11 (7) ◽  
pp. 3463-3471 ◽  
Author(s):  
S R Schmid ◽  
P Linder

The eukaryotic translation initiation factor 4A (eIF-4A) possesses an in vitro helicase activity that allows the unwinding of double-stranded RNA. This activity is dependent on ATP hydrolysis and the presence of another translation initiation factor, eIF-4B. These two initiation factors are thought to unwind mRNA secondary structures in preparation for ribosome binding and initiation of translation. To further characterize the function of eIF-4A in cellular translation and its interaction with other elements of the translation machinery, we have isolated mutations in the TIF1 and TIF2 genes encoding eIF-4A in Saccharomyces cerevisiae. We show that three highly conserved domains of the D-E-A-D protein family, encoding eIF-4A and other RNA helicases, are essential for protein function. Only in rare cases could we make a conservative substitution without affecting cell growth. The mutants show a clear correlation between their growth and in vivo translation rates. One mutation that results in a temperature-sensitive phenotype reveals an immediate decrease in translation activity following a shift to the nonpermissive temperature. These in vivo results confirm previous in vitro data demonstrating an absolute dependence of translation on the TIF1 and TIF2 gene products.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Felix H. Shek ◽  
Sarwat Fatima ◽  
Nikki P. Lee

Hepatocellular carcinoma (HCC) is a primary liver malignancy and accounts for most of the total liver cancer cases. Lack of treatment options and late diagnosis contribute to high mortality rate of HCC. In eukaryotes, translation of messenger RNA (mRNA) to protein is a key process in protein biosynthesis in which initiation of translation involves interaction of different eukaryotic translation initiation factors (eIFs), ribosome subunits and mRNAs. Eukaryotic translation initiation factor 5A (eIF5A) is one of the eIFs involved in translation initiation and eIF5A2, one of its isoforms, is upregulated in various cancers including HCC as a result of chromosomal instability, where it resides. In HCC, eIF5A2 expression is associated with adverse prognosis such as presence of tumor metastasis and venous infiltration. Based on eIF5A2 functional studies, suppressing eIF5A2 expression by short interfering RNA alleviates the tumorigenic properties of HCC cellsin vitrowhile ectopic expression of eIF5A2 enhances the aggressiveness of HCC cellsin vivoandin vitroby inducing epithelial-mesenchymal transition. In conclusion, eIF5A2 is a potential prognostic marker as well as a therapeutic target for HCC.


1991 ◽  
Vol 11 (7) ◽  
pp. 3463-3471 ◽  
Author(s):  
S R Schmid ◽  
P Linder

The eukaryotic translation initiation factor 4A (eIF-4A) possesses an in vitro helicase activity that allows the unwinding of double-stranded RNA. This activity is dependent on ATP hydrolysis and the presence of another translation initiation factor, eIF-4B. These two initiation factors are thought to unwind mRNA secondary structures in preparation for ribosome binding and initiation of translation. To further characterize the function of eIF-4A in cellular translation and its interaction with other elements of the translation machinery, we have isolated mutations in the TIF1 and TIF2 genes encoding eIF-4A in Saccharomyces cerevisiae. We show that three highly conserved domains of the D-E-A-D protein family, encoding eIF-4A and other RNA helicases, are essential for protein function. Only in rare cases could we make a conservative substitution without affecting cell growth. The mutants show a clear correlation between their growth and in vivo translation rates. One mutation that results in a temperature-sensitive phenotype reveals an immediate decrease in translation activity following a shift to the nonpermissive temperature. These in vivo results confirm previous in vitro data demonstrating an absolute dependence of translation on the TIF1 and TIF2 gene products.


2000 ◽  
Vol 20 (21) ◽  
pp. 7933-7942 ◽  
Author(s):  
David C. Schwartz ◽  
Roy Parker

ABSTRACT A major pathway of eukaryotic mRNA turnover occurs by deadenylation-dependent decapping that exposes the transcript to 5′→3′ exonucleolytic degradation. A critical step in this pathway is decapping, since removal of the cap structure permits 5′→3′ exonucleolytic digestion. Based on alterations in mRNA decay rate from strains deficient in translation initiation, it has been proposed that the decapping rate is modulated by a competition between the cytoplasmic cap binding complex, which promotes translation initiation, and the decapping enzyme, Dcp1p. In order to test this model directly, we examined the functional interaction of Dcp1p and the cap binding protein, eukaryotic translation initiation factor 4E (eIF4E), in vitro. These experiments indicated that eIF4E is an inhibitor of Dcp1p in vitro due to its ability to bind the 5′ cap structure. In addition, we demonstrate that in vivo a temperature-sensitive allele of eIF4E (cdc33-42) suppressed the decapping defect of a partial loss-of-function allele of DCP1. These results argue that dissociation of eIF4E from the cap structure is required before decapping. Interestingly, the temperature-sensitive allele of eIF4E does not suppress the decapping defect seen in strains lacking the decapping activators, Lsm1p and Pat1p. This indicates that these activators of decapping affect a step in mRNA turnover distinct from the competition between Dcp1 and eIF4E.


1999 ◽  
Vol 342 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Shinya SATOH ◽  
Makoto HIJIKATA ◽  
Hiroshi HANDA ◽  
Kunitada SHIMOTOHNO

Eukaryotic translation initiation factor 2α (eIF-2α), a target molecule of the interferon-inducible double-stranded-RNA-dependent protein kinase (PKR), was cleaved in apoptotic Saos-2 cells on treatment with poly(I)˙poly(C) or tumour necrosis factor α. This cleavage occurred with a time course similar to that of poly(ADP-ribose) polymerase, a well-known caspase substrate. In addition, eIF-2α was cleaved by recombinant active caspase-3 in vitro. By site-directed mutagenesis, the cleavage site was mapped to an Ala-Glu-Val-Asp300 ↓ Gly301 sequence located in the C-terminal portion of eIF-2α. PKR phosphorylates eIF-2α on Ser51, resulting in the suppression of protein synthesis. PKR-mediated translational suppression was repressed when the C-terminally cleaved product of eIF-2α was overexpressed in Saos-2 cells, even though PKR can phosphorylate this cleaved product. These results suggest that caspase-3 or related protease(s) can modulate the efficiency of protein synthesis by cleaving the α subunit of eIF-2, a key component in the initiation of translation.


1997 ◽  
Vol 17 (12) ◽  
pp. 6876-6886 ◽  
Author(s):  
S Z Tarun ◽  
A B Sachs

mRNA translation in crude extracts from the yeast Saccharomyces cerevisiae is stimulated by the cap structure and the poly(A) tail through the binding of the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) and the poly(A) tail-binding protein Pab1p. These proteins also bind to the translation initiation factor eIF4G and thereby link the mRNA to the general translational apparatus. In contrast, uncapped, poly(A)-deficient mRNA is translated poorly in yeast extracts, in part because of the absence of eIF4E and Pab1p binding sites on the mRNA. Here, we report that uncapped-mRNA translation is also repressed in yeast extracts due to the binding of eIF4E to eIF4G. Specifically, we find that mutations which weaken the eIF4E binding site on the yeast eIF4G proteins Tif4631p and Tif4632p lead to temperature-sensitive growth in vivo and the stimulation of uncapped-mRNA translation in vitro. A mutation in eIF4E which disturbs its ability to interact with eIF4G also leads to a stimulation of uncapped-mRNA translation in vitro. Finally, overexpression of eIF4E in vivo or the addition of excess eIF4E in vitro reverses these effects of the mutations. These data support the hypothesis that the eIF4G protein can efficiently stimulate translation of exogenous uncapped mRNA in extracts but is prevented from doing so as a result of its association with eIF4E. They also suggest that some mRNAs may be translationally regulated in vivo in response to the amount of free eIF4G in the cell.


2007 ◽  
Vol 27 (6) ◽  
pp. 2384-2397 ◽  
Author(s):  
Jeanne M. Fringer ◽  
Michael G. Acker ◽  
Christie A. Fekete ◽  
Jon R. Lorsch ◽  
Thomas E. Dever

ABSTRACT The translation initiation GTPase eukaryotic translation initiation factor 5B (eIF5B) binds to the factor eIF1A and catalyzes ribosomal subunit joining in vitro. We show that rapid depletion of eIF5B in Saccharomyces cerevisiae results in the accumulation of eIF1A and mRNA on 40S subunits in vivo, consistent with a defect in subunit joining. Substituting Ala for the last five residues in eIF1A (eIF1A-5A) impairs eIF5B binding to eIF1A in cell extracts and to 40S complexes in vivo. Consistently, overexpression of eIF5B suppresses the growth and translation initiation defects in yeast expressing eIF1A-5A, indicating that eIF1A helps recruit eIF5B to the 40S subunit prior to subunit joining. The GTPase-deficient eIF5B-T439A mutant accumulated on 80S complexes in vivo and was retained along with eIF1A on 80S complexes formed in vitro. Likewise, eIF5B and eIF1A remained associated with 80S complexes formed in the presence of nonhydrolyzable GDPNP, whereas these factors were released from the 80S complexes in assays containing GTP. We propose that eIF1A facilitates the binding of eIF5B to the 40S subunit to promote subunit joining. Following 80S complex formation, GTP hydrolysis by eIF5B enables the release of both eIF5B and eIF1A, and the ribosome enters the elongation phase of protein synthesis.


1997 ◽  
Vol 17 (1) ◽  
pp. 145-153 ◽  
Author(s):  
T Naranda ◽  
M Kainuma ◽  
S E MacMillan ◽  
J W Hershey

Eukaryotic translation initiation factor 3 (eIF3) in the yeast Saccharomyces cerevisiae comprises about eight polypeptides and plays a central role in the binding of methionyl-tRNAi and mRNA to the 40S ribosomal subunit. The fourth largest subunit, eIF3-p39, was gel purified, and a 12-amino-acid tryptic peptide was sequenced, enabling the cloning of the TIF34 gene. TIF34 encodes a 38,753-Da protein that corresponds to eIF3-p39 in size and antigenicity. Disruption of TIF34 is lethal, and depletion of eIF3-p39 by glucose repression of TIF34 expressed from a GAL promoter results in cessation of cell growth. As eIF3-p39 levels fall, polysomes become smaller, indicating a role for eIF3-p39 in the initiation phase of protein synthesis. Unexpectedly, depletion results in degradation of all of the subunit proteins of eIF3 at a rate much faster than the normal turnover rates of these proteins. eIF3-p39 has 46% sequence identity with the p36 subunit of human eIF3. Both proteins are members of the WD-repeat family of proteins, possessing five to seven repeat elements. Taken together, the results indicate that eIF3-p39 plays an important, although not necessarily direct, role in the initiation phase of protein synthesis and suggest that it may be required for the assembly and maintenance of the eIF3 complex in eukaryotic cells.


Sign in / Sign up

Export Citation Format

Share Document