mrna turnover
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 10)

H-INDEX

57
(FIVE YEARS 0)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fabian Poetz ◽  
Joshua Corbo ◽  
Yevgen Levdansky ◽  
Alexander Spiegelhalter ◽  
Doris Lindner ◽  
...  

AbstractThe CCR4-NOT complex acts as a central player in the control of mRNA turnover and mediates accelerated mRNA degradation upon HDAC inhibition. Here, we explored acetylation-induced changes in the composition of the CCR4-NOT complex by purification of the endogenously tagged scaffold subunit NOT1 and identified RNF219 as an acetylation-regulated cofactor. We demonstrate that RNF219 is an active RING-type E3 ligase which stably associates with CCR4-NOT via NOT9 through a short linear motif (SLiM) embedded within the C-terminal low-complexity region of RNF219. By using a reconstituted six-subunit human CCR4-NOT complex, we demonstrate that RNF219 inhibits deadenylation through the direct interaction of the α-helical SLiM with the NOT9 module. Transcriptome-wide mRNA half-life measurements reveal that RNF219 attenuates global mRNA turnover in cells, with differential requirement of its RING domain. Our results establish RNF219 as an inhibitor of CCR4-NOT-mediated deadenylation, whose loss upon HDAC inhibition contributes to accelerated mRNA turnover.



2021 ◽  
Author(s):  
Michael Ly ◽  
Hannah M. Burgess ◽  
Ian Mohr ◽  
Britt A Glaunsinger

The mRNA 5’ cap structure serves both to protect transcripts from degradation and promote their translation. Cap removal is thus an integral component of mRNA turnover that is carried out by cellular decapping enzymes, whose activity is tightly regulated and coupled to other stages of the mRNA decay pathway. The poxvirus vaccinia virus (VACV) encodes its own decapping enzymes, D9 and D10, that act on cellular and viral mRNA, but may be regulated differently than their cellular counterparts. Here, we evaluated the targeting potential of these viral enzymes using RNA sequencing from cells infected with wild-type and decapping mutant versions of VACV as well as in uninfected cells expressing D10. We found that D9 and D10 target an overlapping subset of viral transcripts but that D10 plays a dominant role in depleting the vast majority of human transcripts, although not in an indiscriminate manner. Unexpectedly, the splicing architecture of a gene influences how robustly its corresponding transcript is targeted by D10, as transcripts derived from intronless genes are less susceptible to enzymatic decapping by D10. As all VACV genes are intronless, preferential decapping of transcripts from intron-encoding genes provides an unanticipated mechanism for the virus to disproportionately deplete host transcripts and remodel the infected cell transcriptome.



Author(s):  
Chandra S. Bathula ◽  
Jian Chen ◽  
Rahul Kumar ◽  
Perry J. Blackshear ◽  
Yogesh Saini ◽  
...  


Author(s):  
Yinchuan Li ◽  
Panpan Mi ◽  
Xue Chen ◽  
Jiabao Wu ◽  
Xiaohua Liu ◽  
...  

mRNAs have been found to undergo substantial selective degradation during the late stages of spermiogenesis. However, the mechanisms regulating this biological process are unknown. In this report, we have identified Tex13a, a spermatid-specific gene that interacts with the CCR4–NOT complex and is implicated in the targeted degradation of mRNAs encoding particular structural components of sperm. Deletion of Tex13a led to a delayed decay of these mRNAs, lowered the levels of house-keeping genes, and ultimately lowered several key parameters associated with the control of sperm motility, such as the path velocity (VAP, average path velocity), track speed (VCL, velocity curvilinear), and rapid progression.



PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0245820
Author(s):  
Grace Kago ◽  
Susan Parrish

The giant Mimivirus is a member of the nucleocytoplasmic large DNA viruses (NCLDV), a group of diverse viruses that contain double-stranded DNA (dsDNA) genomes that replicate primarily in eukaryotic hosts. Two members of the NCLDV, Vaccinia Virus (VACV) and African Swine Fever Virus (ASFV), both synthesize Nudix enzymes that have been shown to decap mRNA, a process thought to accelerate viral and host mRNA turnover and promote the shutoff of host protein synthesis. Mimivirus encodes two Nudix enzymes in its genome, denoted as L375 and L534. Importantly, L375 exhibits sequence similarity to ASFV-DP and eukaryotic Dcp2, two Nudix enzymes shown to possess mRNA decapping activity. In this work, we demonstrate that recombinant Mimivirus L375 cleaves the 5’ m7GpppN mRNA cap, releasing m7GDP as a product. L375 did not significantly cleave mRNAs containing an unmethylated 5’GpppN cap, indicating that this enzyme specifically hydrolyzes methylated-capped transcripts. A point mutation in the L375 Nudix motif completely eliminated cap hydrolysis, showing that decapping activity is dependent on this motif. Addition of uncapped RNA significantly reduced L375 decapping activity, suggesting that L375 may recognize its substrate through interaction with the RNA body.



Author(s):  
Christelle Morris ◽  
David Cluet ◽  
Emiliano P. Ricci


2021 ◽  
Author(s):  
Deniz M. Ozata ◽  
Tianxiong Yu ◽  
Katharine Cecchini ◽  
Haiwei Mou ◽  
Amena Arif ◽  
...  

In male mice, the transcription factor (TF) A MYB initiates reprogramming of gene expression after spermatogonia enter meiosis. We report that A MYB activates Tcfl5, a testis-specific TF first produced in pachytene spermatocytes. Subsequently, A MYB and TCFL5 reciprocally reinforce their own transcription to establish an extensive circuit that regulates meiosis. TCFL5 promotes transcription of genes required for mRNA turnover, pachytene piRNA production, meiotic exit, and spermiogenesis. This transcriptional architecture is conserved in rhesus macaque, suggesting TCFL5 plays a central role in meiosis and spermiogenesis in placental mammals. Tcfl5em1/em1 mutants are sterile, and spermatogenesis arrests at the mid- or late-pachytene stage of meiosis.



Author(s):  
Gabriel Rodríguez-Gómez ◽  
Alejandro Paredes-Villa ◽  
Mayte Guadalupe Cervantes-Badillo ◽  
Jessica Paola Gómez-Sonora ◽  
Jesús H. Jorge-Pérez ◽  
...  


2021 ◽  
Vol 9 (2) ◽  
pp. 389
Author(s):  
Truc Thanh Luong ◽  
Minh Tan Nguyen ◽  
Yi-Wei Chen ◽  
Chungyu Chang ◽  
Ju Huck Lee ◽  
...  

Controlled RNA degradation is a crucial process in bacterial cell biology for maintaining proper transcriptome homeostasis and adaptation to changing environments. mRNA turnover in many Gram-positive bacteria involves a specialized ribonuclease called RNase J (RnJ). To date, however, nothing is known about this process in the diphtheria-causative pathogen Corynebacterium diphtheriae, nor is known the identity of this ribonuclease in this organism. Here, we report that C. diphtheriae DIP1463 encodes a predicted RnJ homolog, comprised of a conserved N-terminal β-lactamase domain, followed by β-CASP and C-terminal domains. A recombinant protein encompassing the β-lactamase domain alone displays 5′-exoribonuclease activity, which is abolished by alanine-substitution of the conserved catalytic residues His186 and His188. Intriguingly, deletion of DIP1463/rnj in C. diphtheriae reduces bacterial growth and generates cell shape abnormality with markedly augmented cell width. Comparative RNA-seq analysis revealed that RnJ controls a large regulon encoding many factors predicted to be involved in biosynthesis, regulation, transport, and iron acquisition. One upregulated gene in the ∆rnj mutant is ftsH, coding for a membrane protease (FtsH) involved in cell division, whose overexpression in the wild-type strain also caused cell-width augmentation. Critically, the ∆rnj mutant is severely attenuated in virulence in a Caenorhabditis elegans model of infection, while the FtsH-overexpressing and toxin-less strains exhibit full virulence as the wild-type strain. Evidently, RNase J is a key ribonuclease in C. diphtheriae that post-transcriptionally influences the expression of numerous factors vital to corynebacterial cell physiology and virulence. Our findings have significant implications for basic biological processes and mechanisms of corynebacterial pathogenesis.



2021 ◽  
Author(s):  
Grace Kago ◽  
Susan Parrish

AbstractThe giant Mimivirus is a member of the nucleocytoplasmic large DNA viruses (NCLDV), a group of diverse viruses that contain double-stranded DNA (dsDNA) genomes that replicate primarily in eukaryotic hosts. Two members of the NCLDV, Vaccinia Virus (VACV) and African Swine Fever Virus (ASFV), both synthesize Nudix enzymes that have been shown to decap mRNA, a process thought to accelerate viral and host mRNA turnover and promote the shutoff of host protein synthesis. Mimivirus encodes two Nudix enzymes in its genome, denoted as L375 and L534. Importantly, L375 exhibits sequence similarity to ASFV-DP and eukaryotic Dcp2, two Nudix enzymes shown to possess mRNA decapping activity. In this work, we demonstrate that recombinant Mimivirus L375 cleaves the 5’ m7GpppN mRNA cap, releasing m7GDP as a product. L375 did not significantly cleave mRNAs containing an unmethylated 5’GpppN cap, indicating that this enzyme specifically hydrolyzes methylated-capped transcripts. A point mutation in the L375 Nudix motif completely eliminated cap hydrolysis, showing that decapping activity is dependent on this motif. Addition of methylated cap derivatives or uncapped RNA inhibited L375 decapping activity, suggesting that L375 recognizes its substrate through interaction with both the mRNA cap and RNA body.



Sign in / Sign up

Export Citation Format

Share Document