intracellular targeting
Recently Published Documents


TOTAL DOCUMENTS

267
(FIVE YEARS 32)

H-INDEX

57
(FIVE YEARS 4)

2021 ◽  
Vol 22 (22) ◽  
pp. 12514
Author(s):  
Vuyelwa Ncapayi ◽  
Neethu Ninan ◽  
Thabang C. Lebepe ◽  
Sundararajan Parani ◽  
Aswathy Ravindran Girija ◽  
...  

The link between the microbiome and cancer has led researchers to search for a potential probe for intracellular targeting of bacteria and cancer. Herein, we developed near infrared-emitting ternary AgInSe/ZnS quantum dots (QDs) for dual bacterial and cancer imaging. Briefly, water-soluble AgInSe/ZnS QDs were synthesized in a commercial kitchen pressure cooker. The as-synthesized QDs exhibited a spherical shape with a particle diameter of 4.5 ± 0.5 nm, and they were brightly fluorescent with a photoluminescence maximum at 705 nm. The QDs showed low toxicity against mouse mammary carcinoma (FM3A-Luc), mouse colon carcinoma (C26), malignant fibrous histiocytoma-like (KM-Luc/GFP) and prostate cancer cells, a greater number of accumulations in Staphylococcus aureus, and good cellular uptake in prostate cancer cells. This work is an excellent step towards using ternary QDs for diagnostic and guided therapy for prostate cancer.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259837
Author(s):  
Zora Novakova ◽  
Daria Khuntsaria ◽  
Marketa Gresova ◽  
Jana Mikesova ◽  
Barbora Havlinova ◽  
...  

Human protoporphyrinogen oxidase IX (hPPO) is an oxygen-dependent enzyme catalyzing the penultimate step in the heme biosynthesis pathway. Mutations in the enzyme are linked to variegate porphyria, an autosomal dominant metabolic disease. Here we investigated eukaryotic cells as alternative systems for heterologous expression of hPPO, as the use of a traditional bacterial-based system failed to produce several clinically relevant hPPO variants. Using bacterially-produced hPPO, we first analyzed the impact of N-terminal tags and various detergent on hPPO yield, and specific activity. Next, the established protocol was used to compare hPPO constructs heterologously expressed in mammalian HEK293T17 and insect Hi5 cells with prokaryotic overexpression. By attaching various fusion partners at the N- and C-termini of hPPO we also evaluated the influence of the size and positioning of fusion partners on expression levels, specific activity, and intracellular targeting of hPPO fusions in mammalian cells. Overall, our results suggest that while enzymatically active hPPO can be heterologously produced in eukaryotic systems, the limited availability of the intracellular FAD co-factor likely negatively influences yields of a correctly folded protein making thus the E.coli a system of choice for recombinant hPPO overproduction. At the same time, PPO overexpression in eukaryotic cells might be preferrable in cases when the effects of post-translational modifications (absent in bacteria) on target protein functions are studied.


2021 ◽  
Author(s):  
Arezoo Shahrivarkevishahi ◽  
Laurel Hagge ◽  
Zhuo Chen ◽  
Olivia Brohlin ◽  
Alisia Tumac ◽  
...  

Intracellular targeting is an important aspect of the efficient delivery of drugs and nanotherapeutics. Cytosolic transport of nanomaterials is often an essential requirement for therapeutic delivery into cells but remains a challenge owing to the endosomal trap and eventual lysosomal degradation of cargo. To address this, we designed a functional carrier that escapes the endosome and delivers biological materials into the cell's cytoplasm. For this purpose, we synthesized a glutathione-sensitive linker that connects the well-known mitochondria targeting lipophilic triphenylphosphonium cation (TPP) to the surface of a proteinaceous nanoparticle based on the engineered virus-like particle (VLP) Qβ. Once in the cytosol, the thiol sensitive linker severs the TPP from the nanoparticle, halting its trafficking to the mitochondria, and marooning it in the cytosol. We demonstrate the successful in vitro cytosolic delivery of a VLP loaded with Green Fluorescent Protein, where evenly distributed fluorescence is observed in A549 lung cancer cells after four hours. We further demonstrate successful cytosolic delivery by showing that encapsulating siRNA inside the VLP promotes luminescence silencing in luciferase expressing HeLa cells more efficiently than VLPs that lack our sheddable TPP linker.


2021 ◽  
Author(s):  
Rana Imani ◽  
Satya Prakash ◽  
Hojatollah Vali ◽  
John F. Presley ◽  
Shahab Faghihi

Abstract A multi-functionalized graphene oxide (GO)-based carrier with conjugation of aminated-polyethylenglycole (PEG-diamine), octaarginine (R8) and folic acid (FA), which also contains chloroquine (CQ), a lysosomotropic agent, is introduced. The cellular uptake mechanisms and intracellular targeting of FA functionalized nanocarriers are examined. The localized releases of CQ and siRNA intracellular delivery are evaluated. Microencapsulation of the nanocarrier complexed with genes in layer-by-layer coating of alginate micro-beads is also investigated. The covalently co-conjugated FA with PEG and R8 provides a stable formulation with increased cellular uptake compared to FA-free carrier. The CQ-equipped nanocarrier shows a 95% release of CQ at lysosomal pH. The localized release of the drug inside the lysosomes is verified which accelerates the cargo discharge into cytoplasm.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Claudie Bian ◽  
Anna Marchetti ◽  
Philippe Hammel ◽  
Pierre Cosson

Abstract Background Cisd1 and Cisd2 proteins share very similar structures with an N-terminal membrane-anchoring domain and a C-terminal cytosolic domain containing an iron-cluster binding domain and ending with a C-terminal KKxx sequence. Despite sharing a similar structure, Cisd1 and Cisd2 are anchored to different compartments: mitochondria for Cisd1 and endoplasmic reticulum for Cisd2. The aim of this study was to identify the protein motifs targeting Cisd2 to the ER and ensuring its retention in this compartment. Results We used new recombinant antibodies to localize Cisd1 and Cisd2 proteins, as well as various protein chimeras. Cisd2 is targeted to the ER by its N-terminal sequence. It is then retained in the ER by the combined action of a C-terminal COPI-binding KKxx ER retrieval motif, and of an ER-targeting transmembrane domain. As previously reported for Cisd1, Cisd2 can alter the morphology of the compartment in which it accumulates. Conclusion Although they share a very similar structure, Cisd1 and Cisd2 use largely different intracellular targeting motifs to reach their target compartment (mitochondria and endoplasmic reticulum, respectively).


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1437
Author(s):  
Kanokporn Sornsuwan ◽  
Weeraya Thongkhum ◽  
Thanathat Pamonsupornwichit ◽  
Tanawan Samleerat Carraway ◽  
Suthinee Soponpong ◽  
...  

Previously, a designed ankyrin repeat protein, AnkGAG1D4, was generated for intracellular targeting of the HIV-1 capsid domain. The efficiency was satisfactory in interfering with the HIV assembly process. Consequently, improved AnkGAG1D4 binding affinity was introduced by substituting tyrosine (Y) for serine (S) at position 45. However, the intracellular anti-HIV-1 activity of AnkGAG1D4-S45Y has not yet been validated. In this study, the performance of AnkGAG1D4 and AnkGAG1D4-S45Y in inhibiting wild-type HIV-1 and HIV-1 maturation inhibitor-resistant replication in SupT1 cells was evaluated. HIV-1 p24 and viral load assays were used to verify the biological activity of AnkGAG1D4 and AnkGAG1D4-S45Y as assembly inhibitors. In addition, retardation of syncytium formation in infected SupT1 cells was observed. Of note, the defense mechanism of both ankyrins did not induce the mutation of target amino acids in the capsid domain. The present data show that the potency of AnkGAG1D4-S45Y was superior to AnkGAG1D4 in interrupting either HIV-1 wild-type or the HIV maturation inhibitor-resistant strain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshihiko Utsumi ◽  
Takuro Hosokawa ◽  
Mayu Shichita ◽  
Misato Nishiue ◽  
Natsuko Iwamoto ◽  
...  

AbstractThe membrane topology and intracellular localization of ANKRD22, a novel human N-myristoylated protein with a predicted single-pass transmembrane domain that was recently reported to be overexpressed in cancer, were examined. Immunofluorescence staining of COS-1 cells transfected with cDNA encoding ANKRD22 coupled with organelle markers revealed that ANKRD22 localized specifically to lipid droplets (LD). Analysis of the intracellular localization of ANKRD22 mutants C-terminally fused to glycosylatable tumor necrosis factor (GLCTNF) and assessment of their susceptibility to protein N-glycosylation revealed that ANKRD22 is synthesized on the endoplasmic reticulum (ER) membrane as an N-myristoylated hairpin-like monotopic membrane protein with the amino- and carboxyl termini facing the cytoplasm and then sorted to LD. Pro98 located at the center of the predicted membrane domain was found to be essential for the formation of the hairpin-like monotopic topology of ANKRD22. Moreover, the hairpin-like monotopic topology, and positively charged residues located near the C-terminus were demonstrated to be required for the sorting of ANKRD22 from ER to LD. Protein N-myristoylation was found to positively affect the LD localization. Thus, multiple factors, including hairpin-like monotopic membrane topology, C-terminal positively charged residues, and protein N-myristoylation cooperatively affected the intracellular targeting of ANKRD22 to LD.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1266
Author(s):  
Luca Fasolato ◽  
Massimiliano Magro ◽  
Giorgio Cozza ◽  
Ferruccio Sbarra ◽  
Simone Molinari ◽  
...  

Protein kinase CK2 is largely involved in cell proliferation and apoptosis and is generally recognized as an Achilles’ heel of cancer, being overexpressed in several malignancies. The beneficial effects of (−)-epigallocatechin-3-gallate (EGCG) in the prevention and treatment of several diseases, including cancer, have been widely reported. However, poor stability and limited bioavailability hinder the development of EGCG as an effective therapeutic agent. The combination of innovative nanomaterials and bioactive compounds into nanoparticle-based systems demonstrates the synergistic advantages of nanocomplexes as compared to the individual components. In the present study, we developed a self-assembled core-shell nanohybrid (SAMN@EGCG) combining EGCG and intrinsic dual-signal iron oxide nanoparticles (Surface Active Maghemite Nanoparticles). Interestingly, nano-immobilization on SAMNs protects EGCG from degradation, preventing its auto-oxidation. Most importantly, the nanohybrid was able to successfully deliver EGCG into cancer cells, displaying impressive protein kinase CK2 inhibition comparable to that obtained with the most specific CK2 inhibitor, CX-4945 (5.5 vs. 3 µM), thus promoting the phytochemical exploitation as a valuable alternative for cancer therapy. Finally, to assess the advantages offered by nano-immobilization, we tested SAMN@EGCG against Pseudomonas aeruginosa, a Gram-negative bacterium involved in severe lung infections. An improved antimicrobial effect with a drastic drop of MIC from 500 to 32.7 μM was shown.


2021 ◽  
Vol 17 (7) ◽  
pp. 1320-1329
Author(s):  
Thaís Dolzany de Oliveira ◽  
Luiz R. Travassos ◽  
Denise Costa Arruda ◽  
Dayane Batista Tada

Nanoparticles (NPs) are a promising strategy for delivering drugs to specific sites because of their tunable size and surface chemistry variety. Among the availablematerials, NPs prepared with biopolymers are of particular interest because of their biocompatibility and controlled release of encapsulated drugs. Poly lactic-co-glycolic acid (PLGA) is one of the most widely used biopolymers in biomedical applications. In addition to material choice modulation of the interaction between NPs and biological systems is essential for the safety and effective use of NPs. Therefore, this work focused on evaluating different surface functionalization strategies to promote cancer cell uptake and intracellular targeting of PLGA NPs. Herein, cell-penetrating peptides (CPPs) were shown to successfully drive PLGA NPs to the mitochondria and nuclei. Furthermore, the functionalization of PLGA NPs with peptide AC-1001 H3 (GQYGNLWFAY) was proven to be useful for targeting actin filaments. The PLGA NPs cell internalization mechanism by B16F10-Nex2 cells was identified as caveolae-mediated endocytosis, which could be inhibited by the presence of methyl-β-cyclodextrin. Notably, when peptide C (CVNHPAFAC) was used to functionalize PLGA NPs, none of the tested inhibitors could avoid cell internalization of PLGA NPs. Therefore, we suggest this peptide as a promising surface modification agent for enhancing drug delivery to cancer cells. Finally, PLGA NPs showed slow release kinetics and low cytotoxic profile, which, combined with the surface functionalization strategies addressed in this study, highlight the potential of PLGA NPs as a drug delivery platform for improving cancer therapy.


Haematologica ◽  
2021 ◽  
Author(s):  
Renate Burger ◽  
Anna Otte ◽  
Jan Brdon ◽  
Matthias Peipp ◽  
Martin Gramatzki

Not available.


Sign in / Sign up

Export Citation Format

Share Document