scholarly journals Inhibition of Host Protein Synthesis and Degradation of Cellular mRNAs During Infection by Influenza and Herpes Simplex Virus

1982 ◽  
Vol 2 (12) ◽  
pp. 1644-1648 ◽  
Author(s):  
S. C. Inglis

Cloned DNA copies of two cellular genes were used to monitor, by blot hybridization, the stability of particular cell mRNAs after infection by influenza virus and herpesvirus. The results indicated that the inhibition of host cell protein synthesis that accompanied infection by each virus could be explained by a reduction in the amounts of cellular mRNAs in the cytoplasm, and they suggested that this decrease was due to virus-mediated mRNA degradation.

1982 ◽  
Vol 2 (12) ◽  
pp. 1644-1648
Author(s):  
S. C. Inglis

Cloned DNA copies of two cellular genes were used to monitor, by blot hybridization, the stability of particular cell mRNAs after infection by influenza virus and herpesvirus. The results indicated that the inhibition of host cell protein synthesis that accompanied infection by each virus could be explained by a reduction in the amounts of cellular mRNAs in the cytoplasm, and they suggested that this decrease was due to virus-mediated mRNA degradation.


1983 ◽  
Vol 3 (7) ◽  
pp. 1212-1221 ◽  
Author(s):  
A Babich ◽  
L T Feldman ◽  
J R Nevins ◽  
J E Darnell ◽  
C Weinberger

We have studied the adenovirus-induced inhibition of host cell protein synthesis and the effect of infection on the overall metabolism of host cell mRNA during the late phase of adenovirus infection by following the fate of a number of cellular mRNAs complementary to specific cloned DNA segments. At a time in infection when the rate of total cellular protein synthesis is drastically (greater than 90%) reduced, transcription of specific cellular genes is undiminished. However, the transport of newly synthesized cellular mRNA to the cytoplasm is greatly decreased. This decreased appearance of new mRNA in the cytoplasm cannot account for the observed cessation of cell specific protein synthesis, however, since the concentration of several preexisting cellular mRNAs, including the mRNA for actin, remains unchanged throughout the course of infection. The preexisting mRNA is intact, capped, and functional as judged by its ability to direct protein synthesis in vitro in a cap-dependent fashion. The interruption in host translation appears to operate at the level of initiation directly, since we find that fewer ribosomes are associated with a given cellular mRNA after infection than before infection. Furthermore, the in vivo inhibition of cellular protein synthesis does not appear to be the result of competition with viral mRNA, since conditions which prevent the efficient initiation of translation of viral mRNA (infection with a viral mutant) do not result in the recovery of cell translation. Thus, it appears that a late adenovirus gene product directly mediates a shutoff of host protein synthesis.


1999 ◽  
Vol 73 (4) ◽  
pp. 3467-3472 ◽  
Author(s):  
Yuri V. Svitkin ◽  
Alessandra Gradi ◽  
Hiroaki Imataka ◽  
Shigenobu Morino ◽  
Nahum Sonenberg

ABSTRACT For many members of the Picornaviridae family, infection of cells results in a shutoff of host protein synthesis. For rhinoviruses and enteroviruses, the shutoff has been explained in part by the cleavage of eukaryotic initiation factor 4GI (eIF4GI), a component of the cap-binding protein complex eIF4F. The cleavage of eIF4GI is mediated by the virus-specific proteinase 2Aproand results in inhibition of cap-dependent, but not cap-independent, translation. The inhibition of host protein synthesis after infection with human rhinovirus 14 (HRV-14) lags behind the cleavage of eIF4GI. Recently, we discovered a functional homolog of eIF4GI, termed eIF4GII, and showed that cleavage of eIF4GII coincides with the shutoff of host cell protein synthesis after poliovirus infection (Gradi et al., Proc. Natl. Acad. Sci. USA 95:11089–11094, 1998). We wished to determine whether eIF4GII cleavage kinetics could also explain the lack of correlation between the kinetics of eIF4GI cleavage and the shutoff of host protein synthesis after rhinovirus infection. In this study, we examined the correlation between human rhinovirus-induced shutoff of host protein synthesis and cleavage of eIF4GI and eIF4GII. In HRV-14-infected HeLa cells, almost no intact eIF4GI could be detected by 4 h postinfection, while only 4% of eIF4GII was cleaved at this time. By 6 h, however, 67% of eIF4GII was cleaved, and this cleavage coincided with a significant (60%) decline of host translation. These results suggest that cleavage of both eIF4GI and eIF4GII is required for HRV-mediated inhibition of host cell protein synthesis and that the cleavage of eIF4GII is the rate-limiting step in the shutoff of host cell protein synthesis after rhinovirus infection.


1983 ◽  
Vol 3 (7) ◽  
pp. 1212-1221 ◽  
Author(s):  
A Babich ◽  
L T Feldman ◽  
J R Nevins ◽  
J E Darnell ◽  
C Weinberger

We have studied the adenovirus-induced inhibition of host cell protein synthesis and the effect of infection on the overall metabolism of host cell mRNA during the late phase of adenovirus infection by following the fate of a number of cellular mRNAs complementary to specific cloned DNA segments. At a time in infection when the rate of total cellular protein synthesis is drastically (greater than 90%) reduced, transcription of specific cellular genes is undiminished. However, the transport of newly synthesized cellular mRNA to the cytoplasm is greatly decreased. This decreased appearance of new mRNA in the cytoplasm cannot account for the observed cessation of cell specific protein synthesis, however, since the concentration of several preexisting cellular mRNAs, including the mRNA for actin, remains unchanged throughout the course of infection. The preexisting mRNA is intact, capped, and functional as judged by its ability to direct protein synthesis in vitro in a cap-dependent fashion. The interruption in host translation appears to operate at the level of initiation directly, since we find that fewer ribosomes are associated with a given cellular mRNA after infection than before infection. Furthermore, the in vivo inhibition of cellular protein synthesis does not appear to be the result of competition with viral mRNA, since conditions which prevent the efficient initiation of translation of viral mRNA (infection with a viral mutant) do not result in the recovery of cell translation. Thus, it appears that a late adenovirus gene product directly mediates a shutoff of host protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document