scholarly journals Tubulin proteins and RNA during the myxamoeba-flagellate transformation of Physarum polycephalum.

1984 ◽  
Vol 4 (9) ◽  
pp. 1706-1711 ◽  
Author(s):  
L L Green ◽  
W F Dove

Physarum myxamoebae can be reversibly induced to become flagellates. Physarum flagellates contain a new form of tubulin, alpha 3, that is not found in nonflagellated cells. Evidence is presented that suggests that alpha 3 tubulin arises through posttranslational modification of a preexisting alpha tubulin. Pulse-chase experiments showed that labeled alpha 3 tubulin could be detected when flagellates formed after a chase. RNA was isolated from myxamoebae at different times after induction of flagellum formation. When this RNA was translated in vitro, the resulting products contained no alpha 3 tubulin, also consistent with alpha 3 being made by posttranslational modification. Levels of alpha and beta tubulin RNA increased with the proportion of flagellates in the culture. These elevated tubulin RNA levels declined after the number of flagellates in the population achieved plateau values.

1984 ◽  
Vol 4 (9) ◽  
pp. 1706-1711
Author(s):  
L L Green ◽  
W F Dove

Physarum myxamoebae can be reversibly induced to become flagellates. Physarum flagellates contain a new form of tubulin, alpha 3, that is not found in nonflagellated cells. Evidence is presented that suggests that alpha 3 tubulin arises through posttranslational modification of a preexisting alpha tubulin. Pulse-chase experiments showed that labeled alpha 3 tubulin could be detected when flagellates formed after a chase. RNA was isolated from myxamoebae at different times after induction of flagellum formation. When this RNA was translated in vitro, the resulting products contained no alpha 3 tubulin, also consistent with alpha 3 being made by posttranslational modification. Levels of alpha and beta tubulin RNA increased with the proportion of flagellates in the culture. These elevated tubulin RNA levels declined after the number of flagellates in the population achieved plateau values.


1980 ◽  
Vol 189 (2) ◽  
pp. 305-312 ◽  
Author(s):  
A Roobol ◽  
C I Pogson ◽  
K Gull

Cell extracts of myxamoebae of Physarum polycephalum have been prepared in such a way that they do not inhibit assembly of brain microtubule protein in vitro even at high extract-protein concentration. Co-polymers of these extracts and brain tubulin have been purified to constant stoichiometry and amoebal components identified by radiolabelling. Amoebal tubulin has been identified as having an alpha-subunit, mol.wt. 54 000, which co-migrates with brain alpha-tubulin and a beta-subunit, mol.wt. 50 000, which co-migrates with Tetrahymena ciliary beta-tubulin. Non-tubulin amoebal proteins that co-purify with tubulin during co-polymer formation have been shown to be essential for microtubule formation in the absence of glycerol and appear to be rather more effective than brain microtubule-associated proteins in stimulating assembly. The mitotic inhibitor griseofulvin (7-chloro-2′,4,6-trimethoxy-6′-methylspiro[benzofuran-2(3H),1′-cyclohex-2′-ene] −3,4′-dione), which binds to brain microtubule-associated proteins and inhibits brain microtubule assembly in vitro, affected co-polymer microtubule protein in a similar way, but to a slightly greater extent.


1990 ◽  
Vol 111 (5) ◽  
pp. 1959-1970 ◽  
Author(s):  
W T Matten ◽  
M Aubry ◽  
J West ◽  
P F Maness

We show here that tubulin is the major in vivo substrate of the tyrosine-specific protein kinase pp60c-src in nerve growth cone membranes. Phosphotyrosine antibodies were used to demonstrate phosphotyrosyl residues in a subpopulation of alpha- and beta-tubulin that was highly enriched in a subcellular fraction of growth cone membranes from fetal rat brain. The presence of phosphotyrosine-modified isoforms of alpha- and beta-tubulin in vivo was confirmed by 32p labeling of rat cortical neurons in culture. Tubulin in growth cone membranes was phosphorylated at tyrosine in endogenous membrane phosphorylation reactions (0.068 mol phosphotyrosine/mol alpha-tubulin and 0.045 mol phosphotyrosine/mol beta-tubulin), and phosphorylation was specifically inhibited by antibodies directed against pp60c-src, which is localized in the growth cone membranes. pp60c-src was capable of directly phosphorylating tubulin as shown in immune complex kinase assays with purified brain tubulin. Phosphopeptide mapping revealed a limited number of sites of tyrosine phosphorylation in alpha- and beta-tubulin, with similar phosphopeptides observed in vivo and in vitro. These results reveal a novel posttranslational modification of tubulin that could regulate microtubule dynamics at the growth cone.


1987 ◽  
Vol 105 (3) ◽  
pp. 1303-1309 ◽  
Author(s):  
D K Shea ◽  
C J Walsh

Three of four mRNAs that are specific to the differentiation of Naegleria gruberi amebae into flagellates (Mar, J., J. H. Lee, D. Shea, and C. J. Walsh, 1986, J. Cell Biol., 102:353-361) have been identified as coding for flagellar proteins. The products of these mRNAs, which are coordinately regulated during the differentiation, were identified by in vitro translation of hybrid-selected RNA followed by two-dimensional gel electrophoresis and antibody binding. Six cross-hybridizing clones complementary to a 1.7-kb RNA (class II) all selected mRNA that was translated into two alpha-tubulins. The principal in vitro product, alpha-1, comigrated with a cytoplasmic alpha-tubulin, while the minor product with a more acidic pI, alpha-2, comigrated with flagellar alpha-tubulin. While Naegleria flagellar alpha-tubulin was found to be acetylated based on its reaction with a monoclonal antibody specific to this form, we suggest that alpha-2 is not likely to arise due to acetylation in vitro but probably represents the product of a second alpha-tubulin gene. The class III clone, also complementary to a 1.7-kb RNA, selected beta-tubulin mRNA. In the course of this work it was found, using monoclonal antibodies to the alpha- and beta-subunits of tubulin, that Naegleria alpha-tubulin migrated faster than beta-tubulin on SDS-PAGE. The class IV clone, which hybridizes with a 0.5-kb RNA, selected an mRNA that was translated into a heat stable calcium-binding protein, flagellar calmodulin.


1987 ◽  
Vol 104 (2) ◽  
pp. 303-309 ◽  
Author(s):  
M A Diggins ◽  
W F Dove

The expression and cytological distribution of acetylated alpha-tubulin was investigated in Physarum polycephalum. A monoclonal antibody specific for acetylated alpha-tubulin, 6-11B-1 (Piperno, G., and M. T. Fuller, 1985, J. Cell Biol., 101:2085-2094), was used to screen for this protein during three different stages of the Physarum life cycle--the amoeba, the flagellate, and the plasmodium. Western blots of two-dimensional gels of amoebal and flagellate proteins reveal that this antibody recognizes the alpha 3 tubulin isotype, which was previously shown to be formed by posttranslational modification (Green, L. L., and W. F. Dove, 1984, Mol. Cell. Biol., 4:1706-1711). Double-label immunofluorescence demonstrates that, in the flagellate, acetylated alpha-tubulin is localized in the flagella and flagellar cone. Similar experiments with amoebae interestingly reveal that only within the microtubule organizing center (MTOC) are there detectable amounts of acetylated alpha-tubulin. In contrast, the plasmodial stage gives no evidence for acetylated alpha-tubulin by Western blotting or by immunofluorescence.


1993 ◽  
Vol 122 (6) ◽  
pp. 1301-1310 ◽  
Author(s):  
R Melki ◽  
IE Vainberg ◽  
RL Chow ◽  
NJ Cowan

The folding of actin and tubulin is mediated via interaction with a heteromeric toroidal complex (cytoplasmic chaperonin) that hydrolyzes ATP as part of the reaction whereby native proteins are ultimately released. Vertebrate actin-related protein (actin-RPV) (also termed centractin) and gamma-tubulin are two proteins that are distantly related to actin and tubulin, respectively: gamma-tubulin is exclusively located at the centrosome, while actin-RPV is conspicuously abundant at the same site. Here we show that actin-RPV and gamma-tubulin are both folded via interaction with the same chaperonin that mediates the folding of beta-actin and alpha- and beta-tubulin. In each case, the unfolded polypeptide forms a binary complex with cytoplasmic chaperonin and is released as a soluble, monomeric protein in the presence of Mg-ATP and the presence or absence of Mg-GTP. In contrast to alpha- and beta-tubulin, the folding of gamma-tubulin does not require the presence of cofactors in addition to chaperonin itself. Monomeric actin-RPV produced in in vitro folding reactions cocycles efficiently with native brain actin, while in vitro folded gamma-tubulin binds to polymerized microtubules in a manner consistent with interaction with microtubule ends. Both monomeric actin-RPV and gamma-tubulin bind to columns of immobilized nucleotide: monomeric actin-RPV has no marked preference for ATP or GTP, while gamma-tubulin shows some preference for GTP binding. We show that actin-RPV and gamma-tubulin compete with one another, and with beta-actin or alpha-tubulin, for binary complex formation with cytoplasmic chaperonin.


1994 ◽  
Vol 301 (1) ◽  
pp. 105-110 ◽  
Author(s):  
R Paciucci

beta-Tubulin synthesized in vitro in rabbit reticulocyte lysate is found associated with 900 kDa complexes (C900) containing T Complex Polypeptide 1 (TCP1), heat-shock protein (hsp) 70 and other unidentified proteins, with smaller 300 kDa complexes (C300) of unknown nature, in dimeric association with reticulocyte alpha-tubulin and in monomeric forms. Pulse-chase experiments indicated that production of fully functional beta-tubulin was preceded by its association with C900 and C300 multimolecular complexes and by the appearance of beta-monomers. The high-molecular-mass forms appeared as intermediate products in the process leading to fully functional dimerizable beta-tubulin. C300-associated tubulin can be released as beta-monomer by addition of a cofactor present in reticulocyte lysate. Here a 25 kDa protein which releases tubulin monomers from C300 has been identified and characterized. The protein specifically released monomers from C300, but not from C900, in a process favoured by GTP.


Author(s):  
J. Metuzals

It has been demonstrated that the neurofibrillary tangles in biopsies of Alzheimer patients, composed of typical paired helical filaments (PHF), consist also of typical neurofilaments (NF) and 15nm wide filaments. Close structural relationships, and even continuity between NF and PHF, have been observed. In this paper, such relationships are investigated from the standpoint that the PHF are formed through posttranslational modifications of NF. To investigate the validity of the posttranslational modification hypothesis of PHF formation, we have identified in thin sections from frontal lobe biopsies of Alzheimer patients all existing conformations of NF and PHF and ordered these conformations in a hypothetical sequence. However, only experiments with animal model preparations will prove or disprove the validity of the interpretations of static structural observations made on patients. For this purpose, the results of in vitro experiments with the squid giant axon preparations are compared with those obtained from human patients. This approach is essential in discovering etiological factors of Alzheimer's disease and its early diagnosis.


1983 ◽  
Vol 3 (6) ◽  
pp. 1070-1076
Author(s):  
S M Landfear ◽  
D McMahon-Pratt ◽  
D F Wirth

The arrangement of developmentally regulated alpha- and beta-tubulin genes has been studied in the parasitic protozoan Leishmania enriettii by using Southern blot hybridization analysis. The alpha-tubulin genes occur in a tandem repeat whose monomeric unit may be represented by a 2-kilobase PstI fragment. Similarly, the beta-tubulin genes probably occur in a separate tandem repeat consisting of approximately 4-kilobase units unlinked to the alpha-tubulin repeats.


Sign in / Sign up

Export Citation Format

Share Document