scholarly journals Differential ability of a T-antigen transport-defective mutant of simian virus 40 to transform primary and established rodent cells.

1985 ◽  
Vol 5 (5) ◽  
pp. 1043-1050 ◽  
Author(s):  
R E Lanford ◽  
C Wong ◽  
J S Butel

The transforming potential and oncogenicity of a simian virus 40 (SV40) mutant affecting T-antigen (T-ag), SV40(cT)-3, was examined in an effort to dissect T-ag functions in transformation. SV40(cT)-3 has a point mutation at nucleotide 4434 that abolishes the transport of T-ag to the nucleus but does not affect its association with the cell surface. Transfection-transformation assays were performed with primary cells and established cell lines of mouse and rat origin. The efficiency of transformation for established cell lines by SV40(cT)-3 was comparable to that of wild-type SV40, indicating that transformation of established cell lines can occur in the absence of detectable amounts of nuclear T-ag. Transformation of primary mouse embryo fibroblasts by SV40(cT)-3 was markedly influenced by culture conditions; the relative transforming frequency was dramatically reduced in assays involving focus formation in low serum concentrations or anchorage-independent growth. Immunofluorescence tests revealed that the transformed mouse embryo fibroblasts partially transport the mutant cT-ag to the cell nucleus. Transformed cell lines induced by SV40(cT)-3 did not differ in growth properties from wild-type transformants. SV40(cT)-3 was completely defective for the transformation of primary baby rat kidney cells, a primary cell type unable to transport the mutant T-ag to the nucleus. The intracellular localization of cellular protein p53 was found to mimic T-ag distribution in all the transformants analyzed. The mutant virus was weakly oncogenic in vivo: the induction of tumors in newborn hamsters by SV40(cT)-3 was reduced in incidence and delayed in appearance in comparison to wild-type SV40. These observations suggest that cellular transformation is regulated by both nuclear and surface-associated forms of SV40 T-ag.

1985 ◽  
Vol 5 (5) ◽  
pp. 1043-1050
Author(s):  
R E Lanford ◽  
C Wong ◽  
J S Butel

The transforming potential and oncogenicity of a simian virus 40 (SV40) mutant affecting T-antigen (T-ag), SV40(cT)-3, was examined in an effort to dissect T-ag functions in transformation. SV40(cT)-3 has a point mutation at nucleotide 4434 that abolishes the transport of T-ag to the nucleus but does not affect its association with the cell surface. Transfection-transformation assays were performed with primary cells and established cell lines of mouse and rat origin. The efficiency of transformation for established cell lines by SV40(cT)-3 was comparable to that of wild-type SV40, indicating that transformation of established cell lines can occur in the absence of detectable amounts of nuclear T-ag. Transformation of primary mouse embryo fibroblasts by SV40(cT)-3 was markedly influenced by culture conditions; the relative transforming frequency was dramatically reduced in assays involving focus formation in low serum concentrations or anchorage-independent growth. Immunofluorescence tests revealed that the transformed mouse embryo fibroblasts partially transport the mutant cT-ag to the cell nucleus. Transformed cell lines induced by SV40(cT)-3 did not differ in growth properties from wild-type transformants. SV40(cT)-3 was completely defective for the transformation of primary baby rat kidney cells, a primary cell type unable to transport the mutant T-ag to the nucleus. The intracellular localization of cellular protein p53 was found to mimic T-ag distribution in all the transformants analyzed. The mutant virus was weakly oncogenic in vivo: the induction of tumors in newborn hamsters by SV40(cT)-3 was reduced in incidence and delayed in appearance in comparison to wild-type SV40. These observations suggest that cellular transformation is regulated by both nuclear and surface-associated forms of SV40 T-ag.


2005 ◽  
Vol 79 (18) ◽  
pp. 11685-11692 ◽  
Author(s):  
Jocelyn S. Kasper ◽  
Hiroshi Kuwabara ◽  
Takehiro Arai ◽  
Syed Hamid Ali ◽  
James A. DeCaprio

ABSTRACT Simian virus 40 large T antigen (T Ag) is capable of immortalizing and transforming rodent cells. The transforming activity of T Ag is due in large part to perturbation of the tumor suppressor proteins p53 and the retinoblastoma (pRB) family members. Inactivation of these tumor suppressors may not be sufficient for T Ag-mediated cellular transformation. It has been shown that T Ag associates with an SCF-like complex that contains a member of the cullin family of E3 ubiquitin ligases, CUL7, as well as SKP1, RBX1, and an F-box protein, FBXW8. We identified T Ag residues 69 to 83 as required for T Ag binding to the CUL7 complex. We demonstrate that Δ69-83 T Ag, while it lost its ability to associate with CUL7, retained binding to p53 and pRB family members. In the presence of CUL7, wild-type (WT) T Ag but not Δ69-83 T Ag was able to induce proliferation of mouse embryo fibroblasts, an indication of cellular transformation. In contrast, WT and Δ69-83 T Ag enabled mouse embryo fibroblasts to proliferate to similarly high densities in the absence of CUL7. Our data suggest that, in addition to p53 and the pRB family members, T Ag serves to bind to and inactivate the growth-suppressing properties of CUL7. In addition, these results imply that, at least in the presence of T Ag, CUL7 may function as a tumor suppressor.


1996 ◽  
Vol 16 (9) ◽  
pp. 5127-5138 ◽  
Author(s):  
E S Gonos ◽  
J S Burns ◽  
G R Mazars ◽  
A Kobrna ◽  
T E Riley ◽  
...  

Introduction of simian virus 40 T antigen into rodent fibroblasts gives rise to cells that can proliferate indefinitely but are dependent upon it for maintenance of their growth once the normal mitotic life span has elapsed. Inactivation of T antigen in these immortalized cells causes rapid and irreversible cessation of growth. To determine whether this growth arrest is associated with entry into senescence, we have undertaken a genetic and biological analysis of conditionally immortal (tsa) cell lines derived by immortalizing rat embryo fibroblasts with the thermolabile tsA58 T antigen. This analysis has identified the following parallels between the tsa cells after inactivation of T antigen and senescent rat embryo fibroblasts: (i) growth arrest is irreversible; (ii) it occurs in G1 as well as G2; (iii) the G1 block can be partially overcome by stimulation with 20% fetal calf serum, but the G2 block cannot be overcome; (iv) 20% fetal calf serum induces c-fos, but c-myc is unaltered; and (v) fibronectin and p21(Waf1/Cip1/Sdi1) are upregulated upon growth arrest. These results suggest that T-antigen-immortalized fibroblasts are committed to undergo senescence but are prevented from undergoing this process by T antigen. Inactivation of T antigen removes this block and results in senescence of the cells. Thus, these cell lines may represent a powerful system for study of the molecular basis of entry into senescence.


1985 ◽  
Vol 5 (4) ◽  
pp. 642-648 ◽  
Author(s):  
J A Small ◽  
D G Blair ◽  
S D Showalter ◽  
G A Scangos

Two plasmids, one containing the simian virus 40 (SV40) genome and the mouse metallothionein I gene and one containing the v-myc gene of avian myelocytomatosis virus MC29, were coinjected into mouse embryos. Of the 13 surviving mice, one, designated M13, contained both myc and SV40 sequences. This mouse developed a cranial bulge identified as a choroid plexus papilloma at 13 weeks and was subsequently sacrificed; tissue samples were taken for further analysis. Primary cell lines derived from these tissues contained both myc and SV40 DNA. No v-myc mRNA could be detected, although SV40 mRNA was present in all of the cell lines tested. T antigen also was expressed in all of the cell lines analyzed. These data suggest that SV40 expression was involved in the abnormalities of mouse M13 and was responsible for the transformed phenotype of the primary cell lines. Primary cell lines from this mouse were atypical in that the population rapidly became progressively more transformed with time in culture based on the following criteria: morphology, growth rate, and the ability to grow in soft agar and in serum-free medium. The data also suggest that factors present in the mouse regulated the ability of SV40 to oncogenically transform most cells and that in vitro culture of cells allowed them to escape those factors.


Sign in / Sign up

Export Citation Format

Share Document