scholarly journals Linker scanning mutagenesis of the 5'-flanking region of the mouse beta-major-globin gene: sequence requirements for transcription in erythroid and nonerythroid cells.

1985 ◽  
Vol 5 (6) ◽  
pp. 1498-1511 ◽  
Author(s):  
P Charnay ◽  
P Mellon ◽  
T Maniatis

We analyzed the sequences required for transcription of the mouse beta-major-globin gene by introducing deletion and linker scanning mutations into the 5'-flanking region and then studying the effects of these mutations on beta-globin gene transcription in a HeLa cell transient expression assay or after stable introduction into mouse erythroleukemia cells. Consistent with earlier studies, we found that three distinct regions upstream from the RNA capping site are required for efficient beta-globin gene transcription in HeLa cells: the ATA box located 30 base pairs upstream from the mRNA capping site (-30), the CCAAT box located at -75, and the distal sequence element CCACACCC located at -90. In the ATA and CAAT box regions, the sequences necessary for efficient transcription extend beyond the limits of the canonical sequences. Mutations in the sequences located between the three transcriptional control elements do not significantly affect transcription in HeLa cells. Although the promoter defined in HeLa cell transfection experiments is also required for efficient transcription in mouse erythroleukemia cells, none of the mutations tested affects the regulation of beta-globin gene transcription during mouse erythroleukemia cell differentiation. Thus, DNA sequences downstream from the mRNA cap site appear to be sufficient for the regulation of beta-globin gene expression during the differentiation of mouse erythroleukemia cells in culture.

1985 ◽  
Vol 5 (6) ◽  
pp. 1498-1511
Author(s):  
P Charnay ◽  
P Mellon ◽  
T Maniatis

We analyzed the sequences required for transcription of the mouse beta-major-globin gene by introducing deletion and linker scanning mutations into the 5'-flanking region and then studying the effects of these mutations on beta-globin gene transcription in a HeLa cell transient expression assay or after stable introduction into mouse erythroleukemia cells. Consistent with earlier studies, we found that three distinct regions upstream from the RNA capping site are required for efficient beta-globin gene transcription in HeLa cells: the ATA box located 30 base pairs upstream from the mRNA capping site (-30), the CCAAT box located at -75, and the distal sequence element CCACACCC located at -90. In the ATA and CAAT box regions, the sequences necessary for efficient transcription extend beyond the limits of the canonical sequences. Mutations in the sequences located between the three transcriptional control elements do not significantly affect transcription in HeLa cells. Although the promoter defined in HeLa cell transfection experiments is also required for efficient transcription in mouse erythroleukemia cells, none of the mutations tested affects the regulation of beta-globin gene transcription during mouse erythroleukemia cell differentiation. Thus, DNA sequences downstream from the mRNA cap site appear to be sufficient for the regulation of beta-globin gene expression during the differentiation of mouse erythroleukemia cells in culture.


1993 ◽  
Vol 13 (8) ◽  
pp. 4844-4851 ◽  
Author(s):  
G Zitnik ◽  
Q Li ◽  
G Stamatoyannopoulos ◽  
T Papayannopoulou

The fusion of human fetal erythroid (HFE) cells with mouse erythroleukemia (MEL) cells produces stable synkaryons (HFE x MEL) which can be monitored for extended periods of time in culture. Initially these hybrids express a human fetal globin program (gamma >> beta), but after weeks or months in culture, they switch to an adult pattern of globin expression (beta >> gamma). The rate at which hybrids switch to the adult phenotype is roughly dependent on the gestational age of the fetal erythroid cells used in the fusion, suggesting that the rate of switching in vitro may be determined by a developmental clock type of mechanism, possibly involving the cumulative number of divisions experienced by the human fetal cells. To investigate whether the number or rate of cell divisions postfusion can influence the rate of switching, we monitored the rate of switching in hybrids from independent fusions under growth-promoting (serum-replete) and growth-suppressing (serum-deprived) conditions. We found that hybrids grown under serum-deprived or serumless conditions switched more rapidly to adult globin expression than did their counterparts in serum-replete conditions. Neither the number of cumulative cell divisions nor time in culture per se predicted the rate of switching in vitro. Our data suggest that factors present in serum either retard switching of hybrids by their presence or promote switching by their absence, indicating that globin switching in vitro can be modulated by the environment; however, once switching in HFE x MEL hybrids is complete, serum factors cannot reverse this process.


1984 ◽  
Vol 4 (11) ◽  
pp. 2553-2555
Author(s):  
M Donovan-Peluso ◽  
K Young ◽  
C Dobkin ◽  
A Bank

K562 cells are human erythroid cells that synthesize embryonic and fetal globins but not adult beta-globin. A cloned beta-globin gene was isolated from K562 cells and transfected into HeLa cells. The RNA transcripts produced were comparable in both amount and size to those obtained with a normal beta-globin gene.


Blood ◽  
1993 ◽  
Vol 81 (5) ◽  
pp. 1384-1392 ◽  
Author(s):  
I Plavec ◽  
T Papayannopoulou ◽  
C Maury ◽  
F Meyer

Abstract Retroviral-mediated gene transfer of human beta-globin provides a model system for the development of somatic gene therapy for hemoglobinopathies. Previous work has shown that mice receiving a transplant of bone marrow cells infected with a retroviral vector containing the human beta-globin gene can express human beta-globin specifically in erythroid cells; however, the level of expression of the transduced globin gene was low (1% to 2% per gene copy as compared with that of the endogenous mouse beta-globin gene). We report here the construction of a recombinant retrovirus vector encoding a human beta- globin gene fused to the 4 major regulatory elements of the human beta- globin locus control region (LCR). The LCR cassette increases the level of expression of the globin gene in murine erythroleukemia cells by 10- fold. To study the level of expression in vivo, mouse bone marrow cells were infected with virus-producing cells and the transduced cells were injected into lethally irradiated recipients. In the majority of provirus-containing mice (up to 75%), expression of human beta-globin in peripheral blood was detected at least 3 to 6 months after transplantation. Twelve animals representative of the level of expression of the transduced gene in blood (0.04% to 3.2% of the endogenous mouse beta-globin RNA) were selected for further analysis. A range of 0.4% to 12% of circulating erythrocytes stained positive for human beta-globin protein. Based on these values, the level of expression of the transduced gene per cell was estimated to be 10% to 39% of the endogenous mouse beta-globin gene. These data demonstrate that fusion of the LCR to the beta-globin gene in a retroviral vector increases the level of beta-globin expression in murine erythroleukemia cells and suggest that high-level expression can be obtained in erythroid cells in vivo after transduction into hematopoietic stem cells.


1984 ◽  
Vol 4 (11) ◽  
pp. 2553-2555 ◽  
Author(s):  
M Donovan-Peluso ◽  
K Young ◽  
C Dobkin ◽  
A Bank

K562 cells are human erythroid cells that synthesize embryonic and fetal globins but not adult beta-globin. A cloned beta-globin gene was isolated from K562 cells and transfected into HeLa cells. The RNA transcripts produced were comparable in both amount and size to those obtained with a normal beta-globin gene.


1988 ◽  
Vol 8 (4) ◽  
pp. 1725-1735
Author(s):  
M A Bender ◽  
A D Miller ◽  
R E Gelinas

Replication-defective amphotropic retrovirus vectors containing either the human beta-globin gene with introns or an intronless beta-globin minigene were constructed and used to study beta-globin expression following gene transfer into hematopoietic cells. The beta-globin genes were marked by introducing a 6-base-pair insertion into the region corresponding to the 5' untranslated region of the beta-globin mRNA to allow detection of RNA encoded by the new gene in human cells expressing normal human beta-globin RNA. Introduction of a virus containing the beta-globin gene with introns into murine erythroleukemia cells resulted in inducible expression of human beta-globin RNA and protein, while the viruses containing the minigene were inactive. The introduced human beta-globin gene was 6 to 110% as active as the endogenous mouse beta maj-globin genes in six randomly chosen cell clones. Introduction of the viruses into human BFU-E cells, followed by analysis of marked and unmarked globin RNAs in differentiated erythroid colonies, revealed that the introduced beta-globin gene was about 5% as active as the endogenous genes in these normal human erythroid cells and that again the minigene was inactive. These data are discussed in terms of the potential treatment of genetic disease by gene therapy.


1988 ◽  
Vol 8 (4) ◽  
pp. 1725-1735 ◽  
Author(s):  
M A Bender ◽  
A D Miller ◽  
R E Gelinas

Replication-defective amphotropic retrovirus vectors containing either the human beta-globin gene with introns or an intronless beta-globin minigene were constructed and used to study beta-globin expression following gene transfer into hematopoietic cells. The beta-globin genes were marked by introducing a 6-base-pair insertion into the region corresponding to the 5' untranslated region of the beta-globin mRNA to allow detection of RNA encoded by the new gene in human cells expressing normal human beta-globin RNA. Introduction of a virus containing the beta-globin gene with introns into murine erythroleukemia cells resulted in inducible expression of human beta-globin RNA and protein, while the viruses containing the minigene were inactive. The introduced human beta-globin gene was 6 to 110% as active as the endogenous mouse beta maj-globin genes in six randomly chosen cell clones. Introduction of the viruses into human BFU-E cells, followed by analysis of marked and unmarked globin RNAs in differentiated erythroid colonies, revealed that the introduced beta-globin gene was about 5% as active as the endogenous genes in these normal human erythroid cells and that again the minigene was inactive. These data are discussed in terms of the potential treatment of genetic disease by gene therapy.


1983 ◽  
Vol 3 (2) ◽  
pp. 229-232 ◽  
Author(s):  
H R Profous-Juchelka ◽  
R C Reuben ◽  
P A Marks ◽  
R A Rifkind

The mechanism responsible for the accumulation of newly synthesized alpha- and beta-globin mRNA in the cytoplasm of induced murine erythroleukemia cells was examined by nuclear mRNA nascent chain elongation (run-off transcription). Hexamethylenebisacetimide, a potent inducer of murine erythroleukemia cell differention, induced high levels of both alpha- and beta-globin gene transcription within 48 to 72 h in culture. Butyric acid, a modest inducer of murine erythroleukemia cells, induced a somewhat lower level of globin gene transcription. With both inducers, alpha-globin transcriptional rates exceeded those of beta-globin. Hemin, on the other hand, showed no detectable increase over the basal rate observed in uninduced cells, even at a time (48 h) when newly synthesized globin mRNA was accumulating in the cytoplasm. These results suggest that there are at least two mechanisms responsible for regulating alpha- and beta-globin structural gene expression in induced murine erythroleukemia cells and that the mechanisms involved are inducer dependent. Hexamethylenebisacetimide and butyric acid increase the rate at which globin genes are transcribed, but hemin appears to allow constitutive levels of transcripts to accumulate.


Sign in / Sign up

Export Citation Format

Share Document