sequence element
Recently Published Documents


TOTAL DOCUMENTS

512
(FIVE YEARS 25)

H-INDEX

69
(FIVE YEARS 2)

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1533
Author(s):  
Noriaki Shimizu

Oncogene amplification is closely linked to the pathogenesis of a broad spectrum of human malignant tumors. The amplified genes localize either to the extrachromosomal circular DNA, which has been referred to as cytogenetically visible double minutes (DMs), or submicroscopic episome, or to the chromosomal homogeneously staining region (HSR). The extrachromosomal circle from a chromosome arm can initiate gene amplification, resulting in the formation of DMs or HSR, if it had a sequence element required for replication initiation (the replication initiation region/matrix attachment region; the IR/MAR), under a genetic background that permits gene amplification. In this article, the nature, intracellular behavior, generation, and contribution to cancer genome plasticity of such extrachromosomal circles are summarized and discussed by reviewing recent articles on these topics. Such studies are critical in the understanding and treating human cancer, and also for the production of recombinant proteins such as biopharmaceuticals by increasing the recombinant genes in the cells.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1727
Author(s):  
Iris Medits ◽  
Franz X. Heinz ◽  
Karin Stiasny

The major envelope protein E of flaviviruses contains an ectodomain that is connected to the transmembrane domain by the so-called “stem” region. In mature flavivirus particles, the stem is composed of two or three mostly amphipathic α-helices and a conserved sequence element (CS) with an undefined role in the viral life cycle. A tryptophan is the only residue within this region which is not only conserved in all vector-borne flaviviruses, but also in the group with no known vector. We investigated the importance of this residue in different stages of the viral life cycle by a mutagenesis-based approach using tick-borne encephalitis virus (TBEV). Replacing W421 by alanine or histidine strongly reduced the release of infectious virions and their thermostability, whereas fusion-related entry functions and virus maturation were still intact. Serial passaging of the mutants led to the emergence of a same-site compensatory mutation to leucine that largely restored these properties of the wildtype. The conserved tryptophan in CS (or another big hydrophobic amino acid at the same position) is thus essential for the assembly and infectivity of flaviviruses by being part of a network required for conferring stability to infectious particles.


2021 ◽  
pp. 1-6
Author(s):  
Aurore Geslot ◽  
Frédérique Savagner ◽  
Philippe Caron

<b><i>Introduction:</i></b> Iodothyronine deiodinases are selenoproteins with the amino acid selenocysteine (Sec) introduced into the position of a TGA stop codon by a complex machinery involving tRNA<sup>[Ser]Sec</sup> when a cis-acting Sec-insertion sequence element is present in the 3′ end of the mRNA. Recently, a variant in the <i>TRU-TCA1-1</i> gene encoding for tRNA<sup>[Ser]Sec</sup> was reported, which resulted in reduced expression of stress-related selenoproteins. The proband presented with multisystem symptoms, euthyroid hyperthyroxinemia, and selenium deficiency. Here, we describe 2 new members of a family harboring the same tRNA<sup>[Ser]Sec</sup> variant. <b><i>Case Presentation:</i></b> A 13-year-old patient was seen for Hashimoto’s disease with high FT3 (4.6 pg/mL, normal range 2–4.2 pg/mL) and normal FT4 and TSH concentrations. He had no clinical complaints. During a 6-year clinical and hormonal follow-up, the index patient was not treated, FT3 decreased, FT4 increased, and serum TSH stayed in the normal range resulting in a euthyroid hyperthyroxinemia. Reverse T3 concentration was significantly increased at the last visit (19 years and 4 months). At the last evaluation, the total selenium level was low (91 μg/L, normal range 95–125). DNA sequencing identified a germinal homozygous variant (C65G) in the <i>TRU-TCA1-1</i> gene. During follow-up, no additional clinical symptom was observed in the absence of any treatment. The same germinal tRNA<sup>[Ser]Sec</sup> variant was identified at heterozygous state in his father, who had normal thyroid function tests except a moderately increased reverse T3 concentration, with increased total selenium (143 μg/L) level. In both patients, the expression of stress-related selenoprotein GPX3 was in the low-normal range (168 and 180 IU/L, respectively, normal range: 150–558 IU/L). We did not find any significant biological abnormalities evocative of other selenoprotein deficiencies. <b><i>Discussion/Conclusion:</i></b> We report on 2 members of a family with a variant in the <i>TRU-TCA1-1</i> gene encoding for tRNA<sup>[Ser]Sec</sup>. Our study suggests that this tRNA<sup>[Ser]Sec</sup> variant is not exclusively causative of disruption in selenoprotein synthesis.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1217
Author(s):  
Marina Cortijo-Gutiérrez ◽  
Sabina Sánchez-Hernández ◽  
María Tristán-Manzano ◽  
Noelia Maldonado-Pérez ◽  
Lourdes Lopez-Onieva ◽  
...  

Integration-deficient lentiviral vectors (IDLVs) have recently generated increasing interest, not only as a tool for transient gene delivery, but also as a technique for detecting off-target cleavage in gene-editing methodologies which rely on customized endonucleases (ENs). Despite their broad potential applications, the efficacy of IDLVs has historically been limited by low transgene expression and by the reduced sensitivity to detect low-frequency off-target events. We have previously reported that the incorporation of the chimeric sequence element IS2 into the long terminal repeat (LTR) of IDLVs increases gene expression levels, while also reducing the episome yield inside transduced cells. Our study demonstrates that the effectiveness of IDLVs relies on the balance between two parameters which can be modulated by the inclusion of IS2 sequences. In the present study, we explore new IDLV configurations harboring several elements based on IS2 modifications engineered to mediate more efficient transgene expression without affecting the targeted cell load. Of all the insulators and configurations analysed, the insertion of the IS2 into the 3′LTR produced the best results. After demonstrating a DAPI-low nuclear gene repositioning of IS2-containing episomes, we determined whether, in addition to a positive effect on transcription, the IS2 could improve the capture of IDLVs on double strand breaks (DSBs). Thus, DSBs were randomly generated, using the etoposide or locus-specific CRISPR-Cas9. Our results show that the IS2 element improved the efficacy of IDLV DSB detection. Altogether, our data indicate that the insertion of IS2 into the LTR of IDLVs improved, not only their transgene expression levels, but also their ability to be inserted into existing DSBs. This could have significant implications for the development of an unbiased detection tool for off-target cleavage sites from different specific nucleases.


2021 ◽  
Author(s):  
Justin Rendleman ◽  
Mahabub Pasha Mohammad ◽  
Matthew Pressler ◽  
Shuvadeep Maity ◽  
Vladislava Hronova ◽  
...  

Translation includes initiation, elongation, and termination, followed by ribosome recycling. We characterize a new sequence element in 5' untranslated regions that consists of an adjacent start and stop codon and thereby excludes elongation. In these start-stop elements, an initiating ribosome is simultaneously positioned for termination without having translocated. At the example of activating transcription factor 4 (ATF4), we demonstrate that start-stops modify downstream re-initiation, thereby repressing translation of upstream open reading frames and enhancing ATF4 inducibility under stress. Start-stop elements are abundant in both mammals and yeast and affect key regulators such as DROSHA and the oncogenic transcription factor NFIA. They provide a unique regulatory layer that impedes ribosome scanning without the energy-expensive peptide production that accompanies upstream open reading frames.


2021 ◽  
Vol 22 (9) ◽  
pp. 4605
Author(s):  
Takahito Mukai

In bacteria, selenocysteine (Sec) is incorporated into proteins via the recoding of a particular codon, the UGA stop codon in most cases. Sec-tRNASec is delivered to the ribosome by the Sec-dedicated elongation factor SelB that also recognizes a Sec-insertion sequence element following the codon on the mRNA. Since the excess of SelB may lead to sequestration of Sec-tRNASec under selenium deficiency or oxidative stress, the expression levels of SelB and tRNASec should be regulated. In this bioinformatic study, I analyzed the Rhizobiales SelB species because they were annotated to have a non-canonical C-terminal extension. I found that the open reading frame (ORF) of diverse Alphaproteobacteria selB genes includes an entire tRNASec sequence (selC) and overlaps with the start codon of the downstream ORF. A remnant tRNASec sequence was found in the Sinorhizobium melilotiselB genes whose products have a shorter C-terminal extension. Similar overlapping traits were found in Gammaproteobacteria and Nitrospirae. I hypothesized that once the tRNASec moiety is folded and processed, the expression of the full-length SelB may be repressed. This is the first report on a nested tRNA gene inside a protein ORF in bacteria.


2021 ◽  
Vol 118 (15) ◽  
pp. e2009329118
Author(s):  
Hauke S. Hillen ◽  
Dmitriy A. Markov ◽  
Ireneusz D. Wojtas ◽  
Katharina B. Hofmann ◽  
Michael Lidschreiber ◽  
...  

Stabilization of messenger RNA is an important step in posttranscriptional gene regulation. In the nucleus and cytoplasm of eukaryotic cells it is generally achieved by 5′ capping and 3′ polyadenylation, whereas additional mechanisms exist in bacteria and organelles. The mitochondrial mRNAs in the yeast Saccharomyces cerevisiae comprise a dodecamer sequence element that confers RNA stability and 3′-end processing via an unknown mechanism. Here, we isolated the protein that binds the dodecamer and identified it as Rmd9, a factor that is known to stabilize yeast mitochondrial RNA. We show that Rmd9 associates with mRNA around dodecamer elements in vivo and that recombinant Rmd9 specifically binds the element in vitro. The crystal structure of Rmd9 bound to its dodecamer target reveals that Rmd9 belongs to the family of pentatricopeptide (PPR) proteins and uses a previously unobserved mode of specific RNA recognition. Rmd9 protects RNA from degradation by the mitochondrial 3′-exoribonuclease complex mtEXO in vitro, indicating that recognition and binding of the dodecamer element by Rmd9 confers stability to yeast mitochondrial mRNAs.


2021 ◽  
Author(s):  
Apidet Rakpenthai ◽  
Anastasia Apodiakou ◽  
Sarah J. Whitcomb ◽  
Rainer Hoefgen

A. thaliana sulfur deficiency-induced 1 and sulfur deficiency-induced 2 (SDI1 and SDI2) are involved in partitioning sulfur among metabolite pools during sulfur deficiency and their transcription is strongly induced by this condition. However, little is currently known about the cis- and trans-factors that regulate SDI expression. To identify potential transcription factors and DNA sequence element regulators of SDI expression we performed a comparative in silico analysis of their promoter sequences cataloguing known and potentially new cis-elements. We further screened an arrayed library of Arabidopsis transcription factors (TF) for binding to the SDI1 and SDI2 promoters. In total 14 candidate TF regulators of SDIs were identified with yeast-one-hybrid analyses, of which five bound to both promoters, 4 were specific to SDI1, and 5 were specific SDI2. Direct association between particular cis-elements in these promoter regions and specific TFs was established via electrophoretic mobility shift assays. SLIM1 was shown to bind SURE cis-element(s) in the proximal promoter region of both SDI1 and SDI2. The bZIP core cis-element in the proximal promoter region of SDI2 was shown to be important for bZIP16, bZIP44, and HYH binding. GBF1 was shown to bind the E-box in the proximal promoter region of SDI2. Additionally, we performed a meta-analysis of expression changes of these 14 TF candidates in a variety of conditions that alter SDI expression. These data will allow for more detailed future analysis of the molecular factors required for transcriptional regulation of SDIs under a range of physiological and metabolic conditions, apart from sulfur deficiency.


2021 ◽  
Vol 17 (1) ◽  
pp. e1009088
Author(s):  
Stephanie J. Child ◽  
Alexander L. Greninger ◽  
Adam P. Geballe

Cytomegaloviruses (CMVs) are generally unable to cross species barriers, in part because prolonged coevolution with one host species limits their ability to evade restriction factors in other species. However, the limitation in host range is incomplete. For example, rhesus CMV (RhCMV) can replicate in human cells, albeit much less efficiently than in rhesus cells. Previously we reported that the protein kinase R (PKR) antagonist encoded by RhCMV, rTRS1, has limited activity against human PKR but is nonetheless necessary and sufficient to enable RhCMV replication in human fibroblasts (HF). We now show that knockout of PKR in human cells or treatment with the eIF2B agonist ISRIB, which overcomes the translational inhibition resulting from PKR activation, augments RhCMV replication in HF, indicating that human PKR contributes to the inefficiency of RhCMV replication in HF. Serial passage of RhCMV in HF reproducibly selected for viruses with improved ability to replicate in human cells. The evolved viruses contain an inverted duplication of the terminal 6.8 kb of the genome, including rTRS1. The duplication replaces ~11.8 kb just downstream of an internal sequence element, pac1-like, which is very similar to the pac1 cleavage and packaging signal found near the terminus of the genome. Plaque-purified evolved viruses produced at least twice as much rTRS1 as the parental RhCMV and blocked the PKR pathway more effectively in HF. Southern blots revealed that unlike the parental RhCMV, viruses with the inverted duplication isomerize in a manner similar to HCMV and other herpesviruses that have internal repeat sequences. The apparent ease with which this duplication event occurs raises the possibility that the pac1-like site, which is conserved in Old World monkey CMV genomes, may serve a function in facilitating rapid adaptation to evolutionary obstacles.


2020 ◽  
Author(s):  
Stephanie J. Child ◽  
Alexander L. Greninger ◽  
Adam P. Geballe

ABSTRACTCytomegaloviruses (CMVs) are generally unable to cross species barriers, in part because prolonged coevolution with one host species limits their ability to evade restriction factors in other species. However, the limitation in host range is incomplete. For example, rhesus CMV (RhCMV) can replicate in human cells, albeit much less efficiently than in rhesus cells. Previously we reported that the protein kinase R (PKR) antagonist encoded by RhCMV, rTRS1, has limited activity against human PKR but is nonetheless necessary and sufficient to enable RhCMV replication in human fibroblasts (HF). We now show that knockout of PKR in human cells or treatment with the eIF2B agonist ISRIB, which overcomes the translational inhibition resulting from PKR activation, augments RhCMV replication in HF, indicating that human PKR contributes to the inefficiency of RhCMV replication in HF. Serial passage of RhCMV in HF reproducibly selected for viruses with improved fitness in human cells. The evolved viruses contain an inverted duplication of the terminal 6.8 kb of the genome, including rTRS1. The duplication replaces ~11.8 kb just downstream of an internal sequence element, pac1-like, which is very similar to the pac1 cleavage and packaging signal found near the terminus of the genome. Plaque-purified evolved viruses produced at least twice as much rTRS1 as the parental RhCMV and blocked the PKR pathway more effectively in HF. Southern blots revealed that unlike the parental RhCMV, viruses with the inverted duplication isomerize in a manner similar to HCMV and other herpesviruses that have internal repeat sequences. The apparent ease with which this duplication event occurs raises the possibility that the pac1-like site, which is conserved in Old World monkey CMV genomes, may serve a function in facilitating rapid adaptation to evolutionary obstacles.AUTHOR SUMMARYRhesus macaque CMV (RhCMV) is an important model for human CMV (HCMV) pathogenesis and vaccine development. Therefore, it is important to understand the similarities and differences in infectivity and interaction of these viruses with their host species. In contrast to the strict species-specificity of HCMV, RhCMV is able to cross species barriers to replicate in human cells. We know from past work that a component of this broader host range is RhCMV’s ability to counteract both the rhesus and human versions of a key antiviral factor. Here we delve further into the mechanisms by which RhCMV can adapt to counteract human cellular defenses. We find that RhCMV appears to be poised to undergo a specific genomic rearrangement that facilitates increased replication efficiency in human cells. Besides providing insights into CMV species-specificity and host barriers to cross-species transmission, this work also provides more generalized clues about viral adaptative mechanisms.


Sign in / Sign up

Export Citation Format

Share Document