chromatin domains
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 51)

H-INDEX

48
(FIVE YEARS 7)

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1415
Author(s):  
Apfrida Kendek ◽  
Marieke R. Wensveen ◽  
Aniek Janssen

The eukaryotic nucleus is continuously being exposed to endogenous and exogenous sources that cause DNA breaks, whose faithful repair requires the activity of dedicated nuclear machineries. DNA is packaged into a variety of chromatin domains, each characterized by specific molecular properties that regulate gene expression and help maintain nuclear structure. These different chromatin environments each demand a tailored response to DNA damage. Silenced chromatin domains in particular present a major challenge to the cell’s DNA repair machinery due to their specific biophysical properties and distinct, often repetitive, DNA content. To this end, we here discuss the interplay between silenced chromatin domains and DNA damage repair, specifically double-strand breaks, and how these processes help maintain genome stability.


Author(s):  
Xinxin Zhang ◽  
Tianzuo Wang

Abstract Over the past few decades, eukaryotic linear genomes and epigenomes have been widely and extensively studied for understanding gene expression regulation. More recently, the three-dimensional (3-D) chromatin organization was found to be important for determining genome functionality, finely tuning physiological processes for appropriate cellular responses. With the development of visualization techniques and chromatin conformation capture (3C)-based techniques, increasing evidence indicates that chromosomal architecture characteristics and chromatin domains with different epigenetic modification in the nucleus are correlated to transcriptional activities. Subsequent studies have further explored the intricate interplay between 3-D genome organization and the function of interacting regions. In this review, we summarize spatial distribution patterns of chromatin, including chromatin positioning, configurations and domains, with a particular focus on the effect of a unique form of interaction between a variety of factors that shapes the 3-D genome conformation in plants. We further discuss the methods, advantages and limitations of various chromatin conformation capture (3C)-based techniques, highlighting the applications of these technologies in plants to identify chromatin domains, and address their dynamic changes and functional implications in evolution, and adaptation to development and changing environmental conditions. Moreover, the future implications and emerging research directions of 3-D genome organization are discussed.


2021 ◽  
Author(s):  
Thelma M. Escobar ◽  
Jia-Ray Yu ◽  
Sanxiong Liu ◽  
Kimberly Lucero ◽  
Nikita Vasilyev ◽  
...  

AbstractThe epigenetic process safeguards cell identity during cell division through the inheritance of appropriate gene expression profiles. We demonstrated previously that parental nucleosomes are inherited by the same chromatin domains during DNA replication only in the case of repressed chromatin. We now show that this specificity is conveyed by NPM1, a histone H3/H4 chaperone. Proteomic analyses of late S-phase chromatin revealed NPM1 in association with both H3K27me3, an integral component of facultative heterochromatin and MCM2, an integral component of the DNA replication machinery; moreover NPM1 interacts directly with PRC2 and with MCM2. Given that NPM1 is essential, the inheritance of repressed chromatin domains was examined anew using mESCs expressing an auxin-degradable version of endogenous NPM1. Upon NPM1 degradation, cells accumulated in S-phase of the cell-cycle and parental nucleosome inheritance from repressed chromatin domains was markedly compromised. Appropriate inheritance required the NPM1 acidic patches that function in chaperone activity, pointing to NPM1 being integral to the epigenetic process.One-Sentence SummaryThe histone H3/H4 chaperone, NPM1, fosters epigenetic inheritance from parental repressed chromatin during DNA replication.


2021 ◽  
Author(s):  
Yu Liu ◽  
Job Dekker

The ring-like cohesin complex mediates sister chromatid cohesion by encircling pairs of sister chromatids. Cohesin also extrudes loops along chromatids. Whether the two activities involve similar mechanisms of DNA engagement is not known. We implemented an experimental approach based on isolated nuclei carrying engineered cleavable RAD21 proteins to precisely control cohesin ring integrity so that its role in chromatin looping could be studied under defined experimental conditions. This approach allowed us to identify cohesin complexes with distinct biochemical, and possibly structural properties, that mediate different sets of chromatin loops. When RAD21 is cleaved and the cohesin ring is opened, cohesin complexes at CTCF sites are released from DNA and loops at these elements are lost. In contrast, cohesin-dependent loops within chromatin domains and that are not anchored at CTCF sites are more resistant to RAD21 cleavage. The results show that the cohesin complex mediates loops in different ways depending on genomic context and suggests that it undergoes structural changes as it dynamically extrudes and encounters CTCF sites.


Author(s):  
Ilias Boltsis ◽  
Frank Grosveld ◽  
Guillaume Giraud ◽  
Petros Kolovos

Chromatin domains and loops are important elements of chromatin structure and dynamics, but much remains to be learned about their exact biological role and nature. Topological associated domains and functional loops are key to gene expression and hold the answer to many questions regarding developmental decisions and diseases. Here, we discuss new findings, which have linked chromatin conformation with development, differentiation and diseases and hypothesized on various models while integrating all recent findings on how chromatin architecture affects gene expression during development, evolution and disease.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Marie Zufferey ◽  
Yuanlong Liu ◽  
Daniele Tavernari ◽  
Marco Mina ◽  
Giovanni Ciriello

Abstract Background Spatial interactions and insulation of chromatin regions are associated with transcriptional regulation. Domains of frequent chromatin contacts are proposed as functional units, favoring and delimiting gene regulatory interactions. However, contrasting evidence supports the association between chromatin domains and transcription. Result Here, we assess gene co-regulation in chromatin domains across multiple human cancers, which exhibit great transcriptional heterogeneity. Across all datasets, gene co-regulation is observed only within a small yet significant number of chromatin domains. We design an algorithmic approach to identify differentially active domains (DADo) between two conditions and show that these provide complementary information to differentially expressed genes. Domains comprising co-regulated genes are enriched in the less active B sub-compartments and for genes with similar function. Notably, differential activation of chromatin domains is not associated with major changes of domain boundaries, but rather with changes of sub-compartments and intra-domain contacts. Conclusion Overall, gene co-regulation is observed only in a minority of chromatin domains, whose systematic identification will help unravel the relationship between chromatin structure and transcription.


2021 ◽  
Author(s):  
Benjamin K Johnson ◽  
Jean-Philippe Fortin ◽  
Kasper D. Hansen ◽  
Hui Shen ◽  
Timothy J. Triche

Single-cell profiling of chromatin structure remains a challenge due to cost, throughput, and resolution. We introduce compartmap to reconstruct higher-order chromatin domains in individual cells from transcriptomic (RNAseq) and epigenomic (ATACseq) assays. In cell lines and primary human samples, compartmap infers higher-order chromatin structure comparable to specialized chromatin capture methods, and identifies clinically relevant structural alterations in single cells. This provides a common lens to integrate transcriptional and epigenomic results, linking higher-order chromatin architecture to gene regulation and to clinically relevant phenotypes in individual cells.


2021 ◽  
Author(s):  
Hui Huang ◽  
Quan Zhu ◽  
Adam Jussila ◽  
Yuanyuan Han ◽  
Bogdan Bintu ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Uma P. Arora ◽  
Caleigh Charlebois ◽  
Raman Akinyanju Lawal ◽  
Beth L. Dumont

Abstract Background Mammalian centromeres are satellite-rich chromatin domains that execute conserved roles in kinetochore assembly and chromosome segregation. Centromere satellites evolve rapidly between species, but little is known about population-level diversity across these loci. Results We developed a k-mer based method to quantify centromere copy number and sequence variation from whole genome sequencing data. We applied this method to diverse inbred and wild house mouse (Mus musculus) genomes to profile diversity across the core centromere (minor) satellite and the pericentromeric (major) satellite repeat. We show that minor satellite copy number varies more than 10-fold among inbred mouse strains, whereas major satellite copy numbers span a 3-fold range. In contrast to widely held assumptions about the homogeneity of mouse centromere repeats, we uncover marked satellite sequence heterogeneity within single genomes, with diversity levels across the minor satellite exceeding those at the major satellite. Analyses in wild-caught mice implicate subspecies and population origin as significant determinants of variation in satellite copy number and satellite heterogeneity. Intriguingly, we also find that wild-caught mice harbor dramatically reduced minor satellite copy number and elevated satellite sequence heterogeneity compared to inbred strains, suggesting that inbreeding may reshape centromere architecture in pronounced ways. Conclusion Taken together, our results highlight the power of k-mer based approaches for probing variation across repetitive regions, provide an initial portrait of centromere variation across Mus musculus, and lay the groundwork for future functional studies on the consequences of natural genetic variation at these essential chromatin domains.


2021 ◽  
Author(s):  
Omid Gholamalamdari ◽  
Liguo Zhang ◽  
Yu Chen ◽  
Andrew Belmont

AbstractLarge-scale chromatin compaction is nonuniform across the human genome and correlates with gene expression and genome organization. Current methodologies for assessing large-scale chromatin compaction are indirect and largely based on assays that probe lower levels of chromatin organization, primarily at the level of the nucleosome and/or the local compaction of nearby nucleosomes. These assays assume a one-to-one correlation between local nucleosomal compaction and large-scale compaction of chromosomes that may not exist. Here we describe a method to identify interphase chromosome regions with relatively high levels of large-scale chromatin decondensation using TSA-seq, which produces a signal proportional to microscopic-scale distances relative to a defined nuclear compartment. TSA-seq scores that change rapidly as a function of genomic distance, detected by their higher slope values, identify decondensed large-scale chromatin domains (DLCDs), as then validated by 3D DNA-FISH. DLCDs map near a subset of chromatin domain boundaries, defined by Hi-C, which separate active and repressed chromatin domains and correspond to compartment, subcompartment, and some TAD boundaries. Most DLCDs can also be detected by high slopes of their Hi-C compartment score. In addition to local enrichment in cohesin (RAD21, SMC3) and CTCF, DLCDs show the highest local enrichment to super-enhancers, but are also locally enriched in transcription factors, histone-modifying complexes, chromatin mark readers, and chromatin remodeling complexes. The localization of these DLCDs to a subset of Hi-C chromatin domain boundaries that separate active versus inactive chromatin regions, as measured by two orthogonal genomic methods, suggests a distinct role for DLCDs in genome organization.


Sign in / Sign up

Export Citation Format

Share Document