Amplification of the gene for histidyl-tRNA synthetase in histidinol-resistant Chinese hamster ovary cells

1985 ◽  
Vol 5 (9) ◽  
pp. 2381-2388
Author(s):  
F W Tsui ◽  
I L Andrulis ◽  
H Murialdo ◽  
L Siminovitch

Histidinol-resistant (HisOHR) mutants with up to a 30-fold increase in histidyl-tRNA synthetase activity have been isolated by stepwise adaptation of wild-type Chinese hamster ovary (CHO) cells to increasing amounts of histidinol in the medium. Immunoprecipitation of [35S]methionine-labeled cell lysates with antibodies to histidyl-tRNA synthetase showed increased synthesis of the enzyme in histidinol-resistant cells. The histidinol-resistant cell lines had an increase in translatable polyadenylated mRNA for histidyl-tRNA synthetase. A cDNA for CHO histidyl-tRNA synthetase has been cloned, using these histidyl-tRNA synthetase-overproducing mutants as the source of mRNA. Southern blot analysis of wild-type and histidinol-resistant cells with this cDNA showed that the histidyl-tRNA synthetase DNA bands were amplified in the resistant cells. These HisOHR cells owed their resistance to histidinol to amplification of the gene for histidyl-tRNA synthetase.

1985 ◽  
Vol 5 (9) ◽  
pp. 2381-2388 ◽  
Author(s):  
F W Tsui ◽  
I L Andrulis ◽  
H Murialdo ◽  
L Siminovitch

Histidinol-resistant (HisOHR) mutants with up to a 30-fold increase in histidyl-tRNA synthetase activity have been isolated by stepwise adaptation of wild-type Chinese hamster ovary (CHO) cells to increasing amounts of histidinol in the medium. Immunoprecipitation of [35S]methionine-labeled cell lysates with antibodies to histidyl-tRNA synthetase showed increased synthesis of the enzyme in histidinol-resistant cells. The histidinol-resistant cell lines had an increase in translatable polyadenylated mRNA for histidyl-tRNA synthetase. A cDNA for CHO histidyl-tRNA synthetase has been cloned, using these histidyl-tRNA synthetase-overproducing mutants as the source of mRNA. Southern blot analysis of wild-type and histidinol-resistant cells with this cDNA showed that the histidyl-tRNA synthetase DNA bands were amplified in the resistant cells. These HisOHR cells owed their resistance to histidinol to amplification of the gene for histidyl-tRNA synthetase.


1989 ◽  
Vol 9 (5) ◽  
pp. 1832-1838
Author(s):  
K J Kontis ◽  
S M Arfin

A cDNA for threonyl-tRNA synthetase was isolated from a human placental cDNA lambda gt11 expression library by immunological screening, and its identity was confirmed by hybrid-selected mRNA translation. With this cDNA used as a hybridization probe, borrelidin-resistant Chinese hamster ovary cells that overproduced threonyl-tRNA synthetase were shown to have increased levels of threonyl-tRNA synthetase mRNA and gene sequences. Amplification of the gene did not appear to have been accompanied by any major structural reorganizations.


1977 ◽  
Vol 55 (4) ◽  
pp. 445-452 ◽  
Author(s):  
Radhey S. Gupta ◽  
Wayne F. Flintoff ◽  
Louis Siminovitch

We have previously described methotrexate-resistant Chinese hamster ovary cells which appear to contain normal levels of a structurally altered dihydrofolate reductase (EC 1.5.1.3) (Flintoff, W. F., Davidson, S. V., and Siminovitch, L. (1976) Somatic Cell Genet. 2, 245–261). By selecting for increased resistance from these class I cells, class III resistant cells were isolated which appeared to possess an increased activity of the altered enzyme. In this report, we describe the purification and several properties of the reductase from wild-type cells, two independently selected class I cells, and a class III resistant cell. The reductases from wild-type and resistant cells had similar specific activities using folate and dihydrofolate as substrates, and similar molecular weights as determined by sodium dodecyl sulfate gel electrophoresis. The mutant enzymes, however, were about six- to eight-fold more resistant to inhibition by methotrexate than the wild-type enzyme, suggesting a decreased affinity of the mutant reductases to methotrexate-binding. Small differences between various enzymes were also seen in other physicochemical properties such as pH optima and Km values for folate, and in their heat stabilities, which suggest that different structural alterations may lead to the same mutant phenotype. As expected from earlier studies with crude extracts, class III cells did produce a higher (about 10-fold) yield of the reductase than the class I or wild-type cells.


1982 ◽  
Vol 94 (3) ◽  
pp. 586-591 ◽  
Author(s):  
B A Criscuolo ◽  
S S Krag

Chinese hamster ovary (CHO) cells resistant to the antibiotic tunicamycin (TM) have been isolated by a stepwise selection procedure with progressive increments of TM added to the medium. TM inhibits asparagine-linked glycoprotein biosynthesis by blocking the transfer of N-acetylglucosamine-1-phosphate from UDP-N-acetylglucosamine to the lipid carrier. The TM-resistant cells exhibited a 200-fold increase in their LD50 for TM and were morphologically distinct from the parental cells. The rate of asparagine-linked glycoprotein biosynthesis was the same for wild-type and TM-resistant cells. Membrane preparations from TM-resistant cells cultured for 16 d in the absence of TM had a 15-fold increase in the specific activity of the UDP-N-acetylglucosamine:dolichol phosphate N-acetylglucosamine-1-phosphate transferase as compared to membranes of wild-type cells. The products of the in vitro assay were N-acetylglucosaminylpyrophosphoryl-lipid and N,N'-diacetylchitobiosylpyrophosphoryl-lipid for membranes from both TM-resistant and wild-type cells. The transferase activity present in membrane preparations from wild-type of TM-resistant cells was inhibited by comparable levels of TM. The data presented are consistent with overproduction of enzyme as the mechanism of resistance in these variant CHO cells.


1980 ◽  
Vol 86 (3) ◽  
pp. 723-729 ◽  
Author(s):  
G A Breen ◽  
I E Scheffler

Oligomycin-resistant clones were isolated from Chinese hamster ovary cells by treatment of cells with ethidium bromide, followed by mutagenesis with ethylmethane sulfonate and selection in oligomycin. One clone (Olir 8.1) was chosen for further study. Olir 8.1 cells grow with doubling time similar to that of wild-type cells, whether grown in the presence or absence of drug (doubling time of 13-14 h). In plating efficiency experiments, Olir 8.1 cells are approximately 100-fold more resistant to oligomycin than are wild-type cells. There is approximately a 32-fold increase in the resistance to inhibition by oligomycin of the mitochondrial ATPase from Olir 8.1 cells. The electron transport chain is functional in Olir 8.1 cells. Oligomycin resistance is stable in the absence of selective pressure. There is little or no cross-resistance of Olir 8.1 cells to venturicidin and dicyclohexylcarbodiimide, other inhibitors of the mitochondrial ATPase, or to chloramphenicol, an inhibitor of mitochondrial protein synthesis. Oligomycin resistance is dominant in hybrids between Olir 8.1 cells and wild-type cells. Fusions of enucleated Olir 8.1 cells with sensitive cells and characterization of the resulting "cybrid" clones indicates that oligomycin resistance in Olir 8.1 cells is cytoplasmically inherited.


1989 ◽  
Vol 9 (5) ◽  
pp. 1832-1838 ◽  
Author(s):  
K J Kontis ◽  
S M Arfin

A cDNA for threonyl-tRNA synthetase was isolated from a human placental cDNA lambda gt11 expression library by immunological screening, and its identity was confirmed by hybrid-selected mRNA translation. With this cDNA used as a hybridization probe, borrelidin-resistant Chinese hamster ovary cells that overproduced threonyl-tRNA synthetase were shown to have increased levels of threonyl-tRNA synthetase mRNA and gene sequences. Amplification of the gene did not appear to have been accompanied by any major structural reorganizations.


Pathology ◽  
1993 ◽  
Vol 25 (3) ◽  
pp. 268-276 ◽  
Author(s):  
Wanda B. Mackinnon ◽  
Marlen Dyne ◽  
Rebecca Hancock ◽  
Carolyn E. Mountford ◽  
Adrienne J. Grant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document