scholarly journals Functional analysis of the role of the A + T-rich region and upstream flanking sequences in simian virus 40 DNA replication.

1986 ◽  
Vol 6 (12) ◽  
pp. 4570-4577 ◽  
Author(s):  
R Gerard ◽  
Y Gluzman

One boundary of the minimal origin of replication of simian virus 40 DNA lies within the A + T-rich region. Deletion of only a few bases into the adenine-thymine (AT) stretch results in a DNA template which is defective for replication both in vivo and in vitro (B. Stillman, R. D. Gerard, R. A. Guggenheimer, and Y. Gluzman, EMBO J. 4:2933-2939, 1985). In the present study, such deletion mutations have been reconstructed into a simian virus 40 genome containing an intact early promoter-enhancer region. The resulting mutants synthesized wild-type levels of T antigen, but were defective for replication and would not form plaques on CV-1 monkey cells. Replication-competent phenotypic revertants were selected after transfection of large quantities of the replication-defective viral DNAs into CV-1 cells. DNA sequence analysis showed that most of these revertants contained insertions or point mutations which partially regenerate the length of the AT stretch. These genotypic alterations were shown to be responsible for the revertant phenotype by replication analysis in vivo of subcloned revertant origin fragments. In general, our results emphasize the importance of the AT region to simian virus 40 origin function. However, one revertant retained the altered AT region but deleted six nucleotides upstream. Experiments using this mutant indicate that the 21-base-pair repeats identified as part of the early transcriptional promoter may compensate for defects in simian virus 40 DNA replication in vivo caused by mutations in the A + T-rich region when positioned at an appropriate distance from the core origin.

1986 ◽  
Vol 6 (12) ◽  
pp. 4570-4577
Author(s):  
R Gerard ◽  
Y Gluzman

One boundary of the minimal origin of replication of simian virus 40 DNA lies within the A + T-rich region. Deletion of only a few bases into the adenine-thymine (AT) stretch results in a DNA template which is defective for replication both in vivo and in vitro (B. Stillman, R. D. Gerard, R. A. Guggenheimer, and Y. Gluzman, EMBO J. 4:2933-2939, 1985). In the present study, such deletion mutations have been reconstructed into a simian virus 40 genome containing an intact early promoter-enhancer region. The resulting mutants synthesized wild-type levels of T antigen, but were defective for replication and would not form plaques on CV-1 monkey cells. Replication-competent phenotypic revertants were selected after transfection of large quantities of the replication-defective viral DNAs into CV-1 cells. DNA sequence analysis showed that most of these revertants contained insertions or point mutations which partially regenerate the length of the AT stretch. These genotypic alterations were shown to be responsible for the revertant phenotype by replication analysis in vivo of subcloned revertant origin fragments. In general, our results emphasize the importance of the AT region to simian virus 40 origin function. However, one revertant retained the altered AT region but deleted six nucleotides upstream. Experiments using this mutant indicate that the 21-base-pair repeats identified as part of the early transcriptional promoter may compensate for defects in simian virus 40 DNA replication in vivo caused by mutations in the A + T-rich region when positioned at an appropriate distance from the core origin.


1987 ◽  
Vol 7 (1) ◽  
pp. 1-6 ◽  
Author(s):  
H Ariga ◽  
T Itani ◽  
S M Iguchi-Ariga

We have already reported that the cloned mouse DNA fragment (pMU65) could replicate in a simian virus 40 T antigen-dependent system in vivo and in vitro (H. Ariga, Z. Tsuchihashi, M. Naruto, and M. Yamada, Mol. Cell. Biol. 5:563-568, 1985). The plasmid p65-tk, containing the thymidine kinase (tk) gene of herpes simplex virus and the BglII-EcoRI region of pMU65 homologous to the simian virus 40 origin of DNA replication, was constructed. The p65-tk persisted episomally in tk+ transformants after the transfection of p65-tk into mouse FM3Atk- cells. The copy numbers of p65-tk in FM3Atk+ cells were 100 to 200 copies per cell. Furthermore, the p65-tk replicated semiconservatively, and the initiation of DNA replication started from the mouse DNA sequences when the replicating activity of p65-tk was tested in the in vitro DNA replication system developed from the FM3A cells. These results show that a 2.5-kilobase fragment of mouse DNA contains the autonomously replicating sequences.


1985 ◽  
Vol 5 (3) ◽  
pp. 563-568 ◽  
Author(s):  
H Ariga ◽  
Z Tsuchihashi ◽  
M Naruto ◽  
M Yamada

Mouse liver DNA was cut out with BamHI and cloned into YIp5, which contained the URA3 gene of Saccharomyces cerevisiae in pBR322. Of the several plasmids isolated, two plasmids, pMU65 and pMU111, could transform S. cerevisiae from the URA- to the URA+ phenotype and could replicate autonomously within the transformant, indicating that mouse DNA fragments present in pMU65 or pMU111 contain autonomously replicating sequences (ARS) for replication in S. cerevisiae. Furthermore, to determine the correlation between ARS function in yeast cells and that in much higher organisms, we tried to challenge these plasmids with the simian virus 40 (SV40) DNA replication system. Of the two plasmids tested, the EcoRI-BglII region of pMU65 could be hybridized with a chemically synthesized 13-nucleotide fragment corresponding to the origin region of SV40 DNA. Both pMU65 (the EcoRI-BglII region cloned in pBR322) and its subclone pMU65EB could replicate semiconservatively, and initiation of DNA replication started from the EcoRI-BglII region when the replicating activity of these plasmids was tested in the in vitro SV40 DNA replication system we have established before. Furthermore, pMU65 and pMU65EB could replicate autonomously within monkey Cos cells which produce SV40 T antigen constitutively. These results show that a 2.5-kilobase fragment of the EcoRI-BglII region in pMU65 contains the ARS needed for replication in the SV40 DNA replication system.


1987 ◽  
Vol 7 (1) ◽  
pp. 1-6
Author(s):  
H Ariga ◽  
T Itani ◽  
S M Iguchi-Ariga

We have already reported that the cloned mouse DNA fragment (pMU65) could replicate in a simian virus 40 T antigen-dependent system in vivo and in vitro (H. Ariga, Z. Tsuchihashi, M. Naruto, and M. Yamada, Mol. Cell. Biol. 5:563-568, 1985). The plasmid p65-tk, containing the thymidine kinase (tk) gene of herpes simplex virus and the BglII-EcoRI region of pMU65 homologous to the simian virus 40 origin of DNA replication, was constructed. The p65-tk persisted episomally in tk+ transformants after the transfection of p65-tk into mouse FM3Atk- cells. The copy numbers of p65-tk in FM3Atk+ cells were 100 to 200 copies per cell. Furthermore, the p65-tk replicated semiconservatively, and the initiation of DNA replication started from the mouse DNA sequences when the replicating activity of p65-tk was tested in the in vitro DNA replication system developed from the FM3A cells. These results show that a 2.5-kilobase fragment of mouse DNA contains the autonomously replicating sequences.


1986 ◽  
Vol 6 (4) ◽  
pp. 1117-1128 ◽  
Author(s):  
J J Li ◽  
K W Peden ◽  
R A Dixon ◽  
T Kelly

To define the sequence elements involved in initiation of DNA synthesis at the simian virus 40 origin of replication, we determined the relative replication efficiencies in vitro and in vivo of templates containing a variety of mutations within the origin region. Replication of the mutants in vitro was assayed by the cell-free DNA replication system that we recently described (J.J. Li and T.J. Kelly, Proc. Natl. Acad. Sci. USA 81:6973-6977, 1984; J.J. Li and T.J. Kelly, Mol. Cell. Biol. 5:1238-1246, 1985), and replication in vivo was assayed after transfection of the mutant templates into COS-1 cells. The minimal origin of replication defined by both assays included a 15-base-pair (bp) imperfect inverted repeat, a 27-bp perfect inverted repeat, and a 17-bp A/T-rich region. T-antigen binding site I was not required for DNA replication, but its presence increased replication efficiency severalfold both in vitro and in vivo. Although SP1 binding sites and enhancers had little or no effect on replication in vitro, the presence of either element markedly increased replication in vivo. Thus, the biological role of these elements is not restricted to stimulating transcription but may be more general.


1985 ◽  
Vol 5 (3) ◽  
pp. 563-568
Author(s):  
H Ariga ◽  
Z Tsuchihashi ◽  
M Naruto ◽  
M Yamada

Mouse liver DNA was cut out with BamHI and cloned into YIp5, which contained the URA3 gene of Saccharomyces cerevisiae in pBR322. Of the several plasmids isolated, two plasmids, pMU65 and pMU111, could transform S. cerevisiae from the URA- to the URA+ phenotype and could replicate autonomously within the transformant, indicating that mouse DNA fragments present in pMU65 or pMU111 contain autonomously replicating sequences (ARS) for replication in S. cerevisiae. Furthermore, to determine the correlation between ARS function in yeast cells and that in much higher organisms, we tried to challenge these plasmids with the simian virus 40 (SV40) DNA replication system. Of the two plasmids tested, the EcoRI-BglII region of pMU65 could be hybridized with a chemically synthesized 13-nucleotide fragment corresponding to the origin region of SV40 DNA. Both pMU65 (the EcoRI-BglII region cloned in pBR322) and its subclone pMU65EB could replicate semiconservatively, and initiation of DNA replication started from the EcoRI-BglII region when the replicating activity of these plasmids was tested in the in vitro SV40 DNA replication system we have established before. Furthermore, pMU65 and pMU65EB could replicate autonomously within monkey Cos cells which produce SV40 T antigen constitutively. These results show that a 2.5-kilobase fragment of the EcoRI-BglII region in pMU65 contains the ARS needed for replication in the SV40 DNA replication system.


1986 ◽  
Vol 6 (4) ◽  
pp. 1117-1128 ◽  
Author(s):  
J J Li ◽  
K W Peden ◽  
R A Dixon ◽  
T Kelly

To define the sequence elements involved in initiation of DNA synthesis at the simian virus 40 origin of replication, we determined the relative replication efficiencies in vitro and in vivo of templates containing a variety of mutations within the origin region. Replication of the mutants in vitro was assayed by the cell-free DNA replication system that we recently described (J.J. Li and T.J. Kelly, Proc. Natl. Acad. Sci. USA 81:6973-6977, 1984; J.J. Li and T.J. Kelly, Mol. Cell. Biol. 5:1238-1246, 1985), and replication in vivo was assayed after transfection of the mutant templates into COS-1 cells. The minimal origin of replication defined by both assays included a 15-base-pair (bp) imperfect inverted repeat, a 27-bp perfect inverted repeat, and a 17-bp A/T-rich region. T-antigen binding site I was not required for DNA replication, but its presence increased replication efficiency severalfold both in vitro and in vivo. Although SP1 binding sites and enhancers had little or no effect on replication in vitro, the presence of either element markedly increased replication in vivo. Thus, the biological role of these elements is not restricted to stimulating transcription but may be more general.


1984 ◽  
Vol 4 (8) ◽  
pp. 1476-1482
Author(s):  
H Ariga

The replicating activity of several cloned DNAs containing putative origin sequences was examined in a cell-free extract that absolutely depends on simian virus 40 (SV40) T antigen promoting initiation of SV40 DNA replication in vitro. Of the three DNAs containing the human Alu family sequence (BLUR8), the origin of (Saccharomyces cerevisiae plasmid 2 micron DNA (pJD29), and the yeast autonomous replicating sequence (YRp7), only BLUR8 was active as a template. Replication in a reaction mixture with BLUR8 as a template was semiconservative and not primed by a putative RNA polymerase III transcript synthesized on the Alu family sequence in vitro. Pulse-chase experiments showed that the small-sized DNA produced in a short-term incubation was converted to full-length closed circular and open circular DNAs in alkaline sucrose gradients. DNA synthesis in extracts began in a region of the Alu family sequence and was inhibited 80% by the addition of anti-T serum. Furthermore, partially purified T antigen bound the Alu family sequence in BLUR8 by the DNA-binding immunoassay. These results suggest that SV40 T antigen recognizes the Alu family sequence, similar to the origin sequence of SV40 DNA, and initiates semiconservative DNA replication in vitro.


1987 ◽  
Vol 7 (10) ◽  
pp. 3694-3704
Author(s):  
C Prives ◽  
Y Murakami ◽  
F G Kern ◽  
W Folk ◽  
C Basilico ◽  
...  

Cell extracts of FM3A mouse cells replicate polyomavirus (Py) DNA in the presence of immunoaffinity-purified Py large T antigen, deoxynucleoside triphosphates, ATP, and an ATP-generating system. This system was used to examine the effects of mutations within or adjacent to the Py core origin (ori) region in vitro. The analysis of plasmid DNAs containing deletions within the early-gene side of the Py core ori indicated that sequences between nucleotides 41 and 57 define the early boundary of Py DNA replication in vitro. This is consistent with previously published studies on the early-region sequence requirements for Py replication in vivo. Deleting portions of the T-antigen high-affinity binding sites A and B (between nucleotides 57 and 146) on the early-gene side of the core ori led to increased levels of replication in vitro and to normal levels of replication in vivo. Point mutations within the core ori region that abolish Py DNA replication in vivo also reduced replication in vitro. A mutant with a reversed orientation of the Py core ori region replicated in vitro, but to a lesser extent that wild-type Py DNA. Plasmids with deletions on the late-gene side of the core ori, within the enhancer region, that either greatly reduced or virtually abolished Py DNA replication in vivo replicated to levels similar to those of wild-type Py DNA plasmids in vitro. Thus, as has been observed with simian virus 40, DNA sequences needed for Py replication in vivo are different from and more stringent than those required in vitro.


Sign in / Sign up

Export Citation Format

Share Document