scholarly journals trans activation of type 1 interferon promoters by simian virus 40 T antigen.

1988 ◽  
Vol 8 (8) ◽  
pp. 3397-3405 ◽  
Author(s):  
J Hiscott ◽  
A Wong ◽  
D Alper ◽  
S Xanthoudakis

A human transient expression system was used to measure the influence of simian virus 40 T antigen and adenovirus E1a proteins on the activation of alpha interferon subtype 1 (IFN-alpha 1) and IFN-beta promoters linked to the reporter chloramphenicol acetyltransferase gene. Large T-antigen production, amplified by expression plasmid replication in transfected 293 cells, was able to trans activate the IFN-beta promoter 5- to 10-fold, increasing both the constitutive and Sendai virus-induced levels of expression. Surprisingly, the previously quiescent transfected IFN-alpha 1 promoter in T-antigen-expressing cells displayed a level of inducibility similar to IFN-beta. The endogenous IFN-alpha 1 gene was also inducible to a limited extent in cells expressing T antigen. A truncated IFN-beta promoter deleted to position -37 relative to the CAP site was neither inducible nor trans activated by T antigen, suggesting that sequences required for efficient induction were also needed for trans activation. Since 293 cells express adenoviral E1a proteins, experiments were also performed in HeLa cells to assess the relative contribution of T antigen and E1a proteins to IFN trans activation. In HeLa cells, T-antigen coexpression increased the constitutive level of IFN-beta and IFN-alpha 1 promoter activity without augmenting relative inducibility. Coexpression of T antigen and E1a proteins did not have a cooperative effect on type 1 IFN expression.

1988 ◽  
Vol 8 (8) ◽  
pp. 3397-3405
Author(s):  
J Hiscott ◽  
A Wong ◽  
D Alper ◽  
S Xanthoudakis

A human transient expression system was used to measure the influence of simian virus 40 T antigen and adenovirus E1a proteins on the activation of alpha interferon subtype 1 (IFN-alpha 1) and IFN-beta promoters linked to the reporter chloramphenicol acetyltransferase gene. Large T-antigen production, amplified by expression plasmid replication in transfected 293 cells, was able to trans activate the IFN-beta promoter 5- to 10-fold, increasing both the constitutive and Sendai virus-induced levels of expression. Surprisingly, the previously quiescent transfected IFN-alpha 1 promoter in T-antigen-expressing cells displayed a level of inducibility similar to IFN-beta. The endogenous IFN-alpha 1 gene was also inducible to a limited extent in cells expressing T antigen. A truncated IFN-beta promoter deleted to position -37 relative to the CAP site was neither inducible nor trans activated by T antigen, suggesting that sequences required for efficient induction were also needed for trans activation. Since 293 cells express adenoviral E1a proteins, experiments were also performed in HeLa cells to assess the relative contribution of T antigen and E1a proteins to IFN trans activation. In HeLa cells, T-antigen coexpression increased the constitutive level of IFN-beta and IFN-alpha 1 promoter activity without augmenting relative inducibility. Coexpression of T antigen and E1a proteins did not have a cooperative effect on type 1 IFN expression.


2011 ◽  
Vol 435 (1) ◽  
pp. 227-235 ◽  
Author(s):  
Francisco J. Aulestia ◽  
Pedro C. Redondo ◽  
Arancha Rodríguez-García ◽  
Juan A. Rosado ◽  
Ginés M. Salido ◽  
...  

Agonist-sensitive intracellular Ca2+ stores may be heterogeneous and exhibit distinct functional features. We have studied the properties of intracellular Ca2+ stores using targeted aequorins for selective measurements in different subcellular compartments. Both, HEK-293T [HEK (human embryonic kidney)-293 cells expressing the large T-antigen of SV40 (simian virus 40)] and HeLa cells accumulated Ca2+ into the ER (endoplasmic reticulum) to near millimolar concentrations and the IP3-generating agonists, carbachol and ATP, mobilized this Ca2+ pool. We find in HEK-293T, but not in HeLa cells, a distinct agonist-releasable Ca2+ pool insensitive to the SERCA (sarco/endoplasmic reticulum Ca2+ ATPase) inhibitor TBH [2,5-di-(t-butyl)-benzohydroquinone]. TG (thapsigargin) and CPA (cyclopiazonic acid) completely emptied this pool, whereas lysosomal disruption or manoeuvres collapsing endomembrane pH gradients did not. Our results indicate that SERCA3d is important for filling the TBH-resistant store as: (i) SERCA3d is more abundant in HEK-293T than in HeLa cells; (ii) the SERCA 3 ATPase activity of HEK-293T cells is not fully blocked by TBH; and (iii) the expression of SERCA3d in HeLa cells generated a TBH-resistant agonist-mobilizable compartment in the ER. Therefore the distribution of SERCA isoforms may originate the heterogeneity of the ER Ca2+ stores and this may be the basis for store specialization in diverse functions. This adds to recent evidence indicating that SERCA3 isoforms may subserve important physiological and pathophysiological mechanisms.


1988 ◽  
Vol 8 (1) ◽  
pp. 466-472 ◽  
Author(s):  
Y Takebe ◽  
M Seiki ◽  
J Fujisawa ◽  
P Hoy ◽  
K Yokota ◽  
...  

We developed a novel promoter system, designated SR alpha, which is composed of the simian virus 40 (SV40) early promoter and the R segment and part of the U5 sequence (R-U5') of the long terminal repeat of human T-cell leukemia virus type 1. The R-U5' sequence stimulated chloramphenicol acetyltransferase (CAT) gene expression only when placed immediately downstream of the SV40 early promoter in the sense orientation. The SR alpha expression system was 1 or 2 orders of magnitude more active than the SV40 early promoter in a wide variety of cell types, including fibroblasts and lymphoid cells, and was capable of promoting a high level of expression of various lymphokine cDNAs. These features of the SR alpha promoter were incorporated into the pcD-cDNA expression cloning vector originally developed by Okayama and Berg.


1999 ◽  
Vol 73 (6) ◽  
pp. 4899-4907 ◽  
Author(s):  
YuFeng Han ◽  
Yueh-Ming Loo ◽  
Kevin T. Militello ◽  
Thomas Melendy

ABSTRACT Papovaviruses utilize predominantly cellular DNA replication proteins to replicate their own viral genomes. To appropriate the cellular DNA replication machinery, simian virus 40 (SV40) large T antigen (Tag) binds to three different cellular replication proteins, the DNA polymerase α-primase complex, the replication protein A (RPA) complex, and topoisomerase I. The functionally similar papillomavirus E1 protein has also been shown to bind to the DNA polymerase α-primase complex. Enzyme-linked immunoassay-based protein interaction assays and protein affinity pull-down assays were used to show that the papillomavirus E1 protein also binds to the cellular RPA complex in vitro. Furthermore, SV40 Tag was able to compete with bovine papillomavirus type 1 E1 for binding to RPA. Each of the three RPA subunits was individually overexpressed in Escherichia colias a soluble fusion protein. These fusion proteins were used to show that the E1-RPA and Tag-RPA interactions are primarily mediated through the 70-kDa subunit of RPA. These results suggest that different viruses have evolved similar mechanisms for taking control of the cellular DNA replication machinery.


1985 ◽  
Vol 5 (5) ◽  
pp. 1034-1042
Author(s):  
J C Alwine

The effects of trans-acting factors and transfected DNA stability on promoter activity were examined with chloramphenicol acetyl transferase (CAT) transient expression analysis. With cotransfection into CV-1P and HeLa cells, simian virus 40 T antigen, adenovirus E1a, and herpes-virus IE proteins were compared for their ability to trans-activate a variety of eucaryotic promoters constructed into CAT plasmids. T antigen and the IE protein were promiscuous activators of all the promoters tested [the simian virus 40 late promoter, the adenovirus E3 promoter, the alpha 2(I) collagen promoter, and the promoter of the Rous sarcoma virus long terminal repeat]. Conversely the E1a protein was specific, activating only the adenovirus E3 promoter and suppressing the basal activity of the other promoters. This specificity of activation by E1a contrasted with the high activity generated by all of the promoter-CAT plasmids when transfected into 293 cells, which endogenously produce E1a protein. Examination of transfected 293 cells determined that they stabilized much greater amounts of plasmid DNA than any other cells tested (CV-1P, COS, NIH-3T3, KB). Thus the high activity of nonadenovirus promoter-CAT plasmids in 293 cells results from the cumulative effect of basal promoter activity from a very large number of gene copies, not from E1a activation. This conclusion was supported by similar transfection analysis of KB cell lines which endogenously produce E1a protein. These cells stabilize plasmid DNA at a level comparable to that of CV-1P cells and, in agreement with the CV-1P cotransfection results, did not activate a nonadenovirus promoter-CAT plasmid. These results indicate that the stability of plasmid DNA must be considered when transient gene expression is being compared between cell lines. The use of relative plasmid copy numbers for the standardization of transient expression results is discussed.


1985 ◽  
Vol 5 (8) ◽  
pp. 2051-2060
Author(s):  
B W Stillman ◽  
Y Gluzman

Soluble extracts prepared from the nucleus and cytoplasm of human 293 cells are capable of efficient replication and supercoiling of added DNA templates that contain the origin of simian virus 40 replication. Extracts prepared from human HeLa cells are less active than similarly prepared extracts from 293 cells for initiation and elongation of nascent DNA strands. DNA synthesis is dependent on addition of purified simian virus 40 tumor (T) antigen, which is isolated by immunoaffinity chromatography of extracts from cells infected with an adenovirus modified to produce large quantities of this protein. In the presence of T antigen and the cytoplasmic extract, replication initiates at the origin and continues bidirectionally. Initiation is completely dependent on functional origin sequences; a plasmid DNA containing an origin mutation known to affect DNA replication in vivo fails to replicate in vitro. Multiple rounds of DNA synthesis occur, as shown by the appearance of heavy-heavy, bromodeoxyuridine-labeled DNA products. The products of this reaction are resolved, but are relaxed, covalently closed DNA circles. Addition of a nuclear extract during DNA synthesis promotes the negative supercoiling of the replicated DNA molecules.


1991 ◽  
Vol 11 (5) ◽  
pp. 2350-2361 ◽  
Author(s):  
P A Bullock ◽  
Y S Seo ◽  
J Hurwitz

Simian virus 40 (SV40) T antigen can efficiently initiate SV40 origin-dependent DNA synthesis in crude extracts of HeLa cells. Therefore, initiation of SV40 DNA synthesis can be analyzed in detail. We present evidence that antibodies which neutralize proliferating cell nuclear antigen (PCNA) inhibit but do not abolish pulse-labeling of nascent DNA. The lengths of DNA products formed after a 5-s pulse in the absence and presence of anti-PCNA serum averaged 150 and 34 nucleotides, respectively. The small DNAs formed in the presence of anti-PCNA serum underwent little or no increase in size during further incubation periods. The addition of PCNA to reaction mixtures inhibited with anti-PCNA serum largely reversed the inhibitory effect of the antiserum. The small nascent DNAs formed in the presence or absence of anti-PCNA serum products arose from the replication of lagging strands. These results suggest that a PCNA-dependent elongation reaction participates in the synthesis of lagging strands as well as leading strands. We also present evidence that in crude extracts of HeLa cells, DNA synthesis generally does not initiate within the core origin. Initiation of DNA synthesis outside of a genetically defined origin region has not been previously described in a eukaryotic replication system but appears to be a common feature of initiation events in many prokaryotic organisms. Additional results presented indicate that in the absence of nucleoside triphosphates other than ATP, the preinitiation complex remains within or close to the SV40 origin.


1991 ◽  
Vol 11 (5) ◽  
pp. 2350-2361
Author(s):  
P A Bullock ◽  
Y S Seo ◽  
J Hurwitz

Simian virus 40 (SV40) T antigen can efficiently initiate SV40 origin-dependent DNA synthesis in crude extracts of HeLa cells. Therefore, initiation of SV40 DNA synthesis can be analyzed in detail. We present evidence that antibodies which neutralize proliferating cell nuclear antigen (PCNA) inhibit but do not abolish pulse-labeling of nascent DNA. The lengths of DNA products formed after a 5-s pulse in the absence and presence of anti-PCNA serum averaged 150 and 34 nucleotides, respectively. The small DNAs formed in the presence of anti-PCNA serum underwent little or no increase in size during further incubation periods. The addition of PCNA to reaction mixtures inhibited with anti-PCNA serum largely reversed the inhibitory effect of the antiserum. The small nascent DNAs formed in the presence or absence of anti-PCNA serum products arose from the replication of lagging strands. These results suggest that a PCNA-dependent elongation reaction participates in the synthesis of lagging strands as well as leading strands. We also present evidence that in crude extracts of HeLa cells, DNA synthesis generally does not initiate within the core origin. Initiation of DNA synthesis outside of a genetically defined origin region has not been previously described in a eukaryotic replication system but appears to be a common feature of initiation events in many prokaryotic organisms. Additional results presented indicate that in the absence of nucleoside triphosphates other than ATP, the preinitiation complex remains within or close to the SV40 origin.


Sign in / Sign up

Export Citation Format

Share Document