scholarly journals A-to-I mRNA Editing in a Ferric Siderophore Receptor Improves Competition for Iron in Xanthomonas oryzae pv. oryzicola

Author(s):  
Wenhan Nie ◽  
Sai Wang ◽  
Jin Huang ◽  
Qin Xu ◽  
Peihong Wang ◽  
...  

Adenosine-to-inosine (A-to-I) RNA editing, which is catalyzed by the adenosine deaminase RNA-specific family of enzymes, is a frequent posttranscriptional modification in metazoans. Research on A-to-I editing in bacteria is limited, and the importance of this editing is underestimated.

1999 ◽  
Vol 40 (4) ◽  
pp. 623-635 ◽  
Author(s):  
Ba-Bie Teng ◽  
Scott Ochsner ◽  
Qian Zhang ◽  
Kizhake V. Soman ◽  
Paul P. Lau ◽  
...  

2002 ◽  
Vol 22 (19) ◽  
pp. 6726-6734 ◽  
Author(s):  
Tetsuya Miyamoto ◽  
Junichi Obokata ◽  
Masahiro Sugiura

ABSTRACT RNA editing in higher-plant chloroplasts involves C-to-U conversions at specific sites. Although in vivo analyses have been performed, little is known about the biochemical aspects of chloroplast editing reactions. Here we improved our original in vitro system and devised a procedure for preparing active chloroplast extracts not only from tobacco plants but also from pea plants. Using our tobacco in vitro system, cis-acting elements were defined for psbE and petB mRNAs. Distinct proteins were found to bind specifically to each cis-element, a 56-kDa protein to the psbE site and a 70-kDa species to the petB site. Pea chloroplasts lack the corresponding editing site in psbE since T is already present in the DNA. Parallel in vitro analyses with tobacco and pea extracts revealed that the pea plant has no editing activity for psbE mRNAs and lacks the 56-kDa protein, whereas petB mRNAs are edited and the 70-kDa protein is also present. Therefore, coevolution of an editing site and its cognate trans-factor was demonstrated biochemically in psbE mRNA editing between tobacco and pea plants.


RNA ◽  
2000 ◽  
Vol 6 (7) ◽  
pp. 1004-1018 ◽  
Author(s):  
MICHAEL J. PALLADINO ◽  
LIAM P. KEEGAN ◽  
MARY A. O'CONNELL ◽  
ROBERT A. REENAN

2019 ◽  
Vol 47 (7) ◽  
pp. 3640-3657 ◽  
Author(s):  
Brianna L Tylec ◽  
Rachel M Simpson ◽  
Laura E Kirby ◽  
Runpu Chen ◽  
Yijun Sun ◽  
...  

Abstract Most mitochondrial mRNAs in kinetoplastids require extensive uridine insertion/deletion editing to generate translatable open reading frames. Editing is specified by trans-acting gRNAs and involves a complex machinery including basal and accessory factors. Here, we utilize high-throughput sequencing to analyze editing progression in two minimally edited mRNAs that provide a simplified system due their requiring only two gRNAs each for complete editing. We show that CYb and MURF2 mRNAs exhibit barriers to editing progression that differ from those previously identified for pan-edited mRNAs, primarily at initial gRNA usage and gRNA exchange. We demonstrate that mis-edited junctions arise through multiple pathways including mis-alignment of cognate gRNA, incorrect and sometimes promiscuous gRNA utilization and inefficient gRNA anchoring. We then examined the roles of accessory factors RBP16 and MRP1/2 in maintaining edited CYb and MURF2 populations. RBP16 is essential for initiation of CYb and MURF2 editing, as well as MURF2 editing progression. In contrast, MRP1/2 stabilizes both edited mRNA populations, while further promoting progression of MURF2 mRNA editing. We also analyzed the effects of RNA Editing Substrate Binding Complex components, TbRGG2 and GAP1, and show that both proteins modestly impact progression of editing on minimally edited mRNAs, suggesting a novel function for GAP1.


1996 ◽  
Vol 271 (21) ◽  
pp. 12221-12226 ◽  
Author(s):  
Stefan Maas ◽  
Thorsten Melcher ◽  
Anne Herb ◽  
Peter H. Seeburg ◽  
Walter Keller ◽  
...  

Nature ◽  
1996 ◽  
Vol 380 (6573) ◽  
pp. 454-456 ◽  
Author(s):  
Andrew G. Poison ◽  
Brenda L. Bass ◽  
John L. Casey

Sign in / Sign up

Export Citation Format

Share Document