Late Pleistocene soft-sediment deformation structure interpreted as seismites in paralic deposits in the City of Bari (Apulian Foreland, southern Italy)

Author(s):  
Massimo Moretti ◽  
Piero Pieri ◽  
Marcello Tropeano
Geologos ◽  
2019 ◽  
Vol 25 (2) ◽  
pp. 111-124
Author(s):  
Uk Hwan Byun ◽  
A.J. Tom van Loon ◽  
Yi Kyun Kwon ◽  
Kyoungtae Ko

Abstract The sediments of the Cretaceous Gyeokpori Formation in south-western South Korea accumulated in a lake in which mainly siliciclastic rocks were deposited, with some interbedded volcaniclastics. The nearby volcanic activity resulted in unstable lake margins inducing a dominance of gravity-flow deposits. The high sedimentation rate facilitated soft-sediment deformation on the sloping margin. The deposition of numerous gravity-flow deposits resulted in a vertically heterolithic stratification. The slumps are composed of different lithologies, which is expressed in different types of deformation due to the difference in cohesion between sandy and mussy layers within the slumps. Coarser-grained (cohesionless) slumps tend to show more chaotic deformation of their lamination or layering. The difference in slumping behaviour of the cohesive and non-cohesive examples is explained and modelled. A unique soft-sediment deformation structure is recognized. This structure has not been described before, and we call it ‘envelope structure’. It consists of a conglomerate mass that has become entirely embedded in fine-grained sediment because slope failure took place and the fine-grained material slumped down with the conglomerate ‘at its back’. The cohesive laminated mudstone formed locally slump folds that embedded the non-cohesive overlying conglomerate unit, possibly partly due to the bulldozing effect of the latter. This structure presumably can develop when the density contrast with the underlying and overlying deposits is exceptionally high. The envelope structure should be regarded as a special – and rare – type of a slumping-induced deformation structure.


2021 ◽  
Author(s):  
Laura del Valle Villalonga ◽  
Francesc Pomar ◽  
Joan J Fornós ◽  
Bernadí Gelabert ◽  
Alida Timar-Gabor

Abstract We analyze the evolution of the undeformed Middle to Late Pleistocene deposits of Es Codolar (Southern Eivissa, Western Mediterranean). The outcrop records a succession characterized by the alternation of aeolian, colluvial and alluvial fan deposits and palaeosols that result in a complex stratigraphic architecture. In this area, aeolian beds, colluvial deposits and palaeosols are exposed along sea-cliffs for almost 500 m, allowing detailed descriptions both of the general sedimentological and geomorphological features of the Middle to Late Pleistocene deposits. Several different types of soft-sediment deformation structures are described (Load-casts structures, injection structures, water-scape structures, rizoconcretions), which will help us in the understanding of the climatic evolution and the syn and post-depositional processes. In this way, main processes triggering the formation of these structures seem to be sea level changes together with a wetter environment during warmer climatic episodes.


Geologos ◽  
2014 ◽  
Vol 20 (2) ◽  
pp. 147-156 ◽  
Author(s):  
Laura P Perucca ◽  
Enrique Godoy ◽  
Ana Pantano

Abstract Evidence of earthquake-induced liquefaction features in the Acequión river valley, central western Argentina, is analysed. Well-preserved soft-sediment deformation structures are present in Late Pleistocene deposits; they include two large slumps and several sand dikes, convolutions, pseudonodules, faults, dish structures and diapirs in the basal part of a shallow-lacustrine succession in the El Acequión River area. The water-saturated state of these sediments favoured deformation. All structures were studied in a natural trench created as a result of erosion by a tributary of the Acequión River, called El Mono Creek. They form part of a large-scale slump system. Two slumps occur in the western portion of the trench and must have moved towards the ENE (70°), where the depocentre of the Boca del Acequión area is situated. Considering the spatial relationship with Quaternary faults, the slumps are interpreted as being due to a seismic event. The thickest dikes in the El Mono Creek trench occur in the eastern portion of the trench, indicating that the responsible earthquake was located to the east of the study area, probably at the Cerro Salinas fault system zone. The slumps, sand dikes and other soft-sediment deformation features are interpreted as having been triggered by earthquakes, thus providing a preliminary palaeoseismic record of the Cerro Salinas fault system and extending the record of moderate-to high-magnitude earthquakes in central western Argentina to the Late Pleistocene.


Sign in / Sign up

Export Citation Format

Share Document