Terrestrial and extraterrestrial chemical components of early Archean impact spherule layers from Fairview Gold Mine, northern Barberton greenstone belt, South Africa

Author(s):  
Grace Juliana Gonçalves de Oliveira ◽  
Wolf Uwe Reimold ◽  
Álvaro Penteado Crósta ◽  
Natalia Hauser ◽  
Christian Koeberl ◽  
...  

ABSTRACT Early Archean spherule layers, widely accepted to represent distal ejecta deposits from large-scale impact events onto the early Earth, have been described from several stratigraphic levels of the Barberton greenstone belt in South Africa. Recently, exploration drilling at the Fairview Gold Mine (25°43′53″S, 31°5′59″E) in the northern domain of the belt resulted in the discovery of a new set of spherule layer intersections. The Fairview spherule layers in drill cores BH5901, BH5907, BH5911, and BH5949 were intersected just a few meters apart, at about the same stratigraphic position within the transition from the Onverwacht Group to the Fig Tree Group. The Fairview spherule layers have petrographic and chemical similarities to at least three other well-known Barberton spherule layers (S2–S4), and multiple spherule layer bed intersections in drill cores BARB5 and CT3, all from about the same stratigraphic position. They are not uniform in composition, in particular with respect to abundances of highly siderophile elements. The highest concentrations of moderately (Cr, Co, Ni) and highly siderophile (Ir) elements are within the range of concentrations for chondrites and, thus, reinforce the impact hypothesis for the generation of the Fairview spherule layers. Iridium peak concentrations and Cr/Ir interelement ratios for spherule layer samples from drill cores BH5907, BH5911, and BH5949 suggest admixtures of 50%–60% chondritic material, whereas for the BH5901 spherule layer, only an admixture of 1% chondritic material is indicated. We discuss whether these four Fairview spherule layers represent the same impact event, and whether they can be correlated to any of the S2–S4, CT3, and BARB5 intersections.

2020 ◽  
Vol 162 ◽  
pp. 103718
Author(s):  
Grace Juliana Gonçalves de Oliveira ◽  
Wolf Uwe Reimold ◽  
Alvaro Penteado Crósta ◽  
Natalia Hauser ◽  
Tanja Mohr-Westheide ◽  
...  

2014 ◽  
Vol 6 (1) ◽  
pp. 1227-1264 ◽  
Author(s):  
M. Ledevin ◽  
N. Arndt ◽  
A. Simionovici

Abstract. A 100 m-thick complex of near-vertical carbonaceous chert dikes marks the transition from the Mendon to Mapepe Formations (3260 Ma) in the Barberton Greenstone Belt, South Africa. Fracturing was intense in this area, as shown by the profusion and width of the dikes (ca. 1 m on average) and by the abundance of completely shattered rocks. The dike-and-sill organization of the fracture network and the upward narrowing of some of the large veins indicate that at least part of the fluid originated at depth and migrated upward in this hydrothermal plumbing system. Abundant angular fragments of silicified country rock are suspended and uniformly distributed within the larger dikes. Jigsaw-fit structures and confined bursting textures indicate that hydraulic fracturing was at the origin of the veins. The confinement of the dike system beneath an impact spherule bed suggests that the hydrothermal circulations were triggered by the impact and located at the external margin of a large crater. From the geometry of the dikes and the petrography of the cherts, we infer that the fluid that invaded the fractures was thixotropic. On one hand, the injection of black chert into extremely fine fractures is evidence for low viscosity at the time of injection; on the other hand, the lack of closure of larger veins and the suspension of large fragments in a chert matrix provide evidence of high viscosity soon thereafter. The inference is that the viscosity of the injected fluid increased from low to high as the fluid velocity decreased. Such rheological behavior is characteristic of media composed of solid and colloidal particles suspended in a liquid. The presence of abundant clay-sized, rounded particles of silica, carbonaceous matter and clay minerals, the high proportion of siliceous matrix and the capacity of colloidal silica to form cohesive 3-D networks through gelation, account for the viscosity increase and thixotropic behavior of the fluid that filled the veins. Stirring and shearing of the siliceous mush as it was injected imparted a low viscosity by decreasing internal particle interactions; then, as the flow rate declined, the fluid became highly viscous as the inter-particulate bonds (siloxane bonds, Si-O-Si) were reconstituted. The gelation of the chert was rapid and the structure persisted at low temperature (T < 200 °C) before fractures were sealed and chert indurated.


Sign in / Sign up

Export Citation Format

Share Document