drill cores
Recently Published Documents


TOTAL DOCUMENTS

259
(FIVE YEARS 42)

H-INDEX

22
(FIVE YEARS 4)

Fossil Record ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 395-441
Author(s):  
Richard M. Besen ◽  
Ulrich Struck ◽  
Ekbert Seibertz

Abstract. Albian to Turonian carbonate deposits at three different locations of the Lower Saxony Cretaceous and thereby of the European mid-Cretaceous epeiric shelf sea were investigated for their fossil agglutinated foraminiferal fauna. In this study, 71 samples from two quarries and three drill cores were treated with formic acid, which enabled the study of agglutinated foraminiferal assemblages even in highly lithified limestones. In total, 114 species were determined and classified as belonging to nine morphogroups. In general, four agglutinated foraminiferal assemblages are distinguished: (1) an uppermost Albian–lowermost Cenomanian assemblage from the Wunstorf drill cores, with the dominant taxa Bathysiphon spp., Nothia spp., Psammosphaera fusca, Reophax subfusiformis, Bulbobaculites problematicus, Tritaxia tricarinata, Flourensina intermedia, Vialovella frankei, Arenobulimina truncata, and Voloshinoides advenus; (2) a Cenomanian assemblage from the Baddeckenstedt quarry and Wunstorf drill cores, with Ammolagena clavata, Tritaxia tricarinata, Vialovella frankei, Arenobulimina truncata, and Voloshinoides advenus; (3) an assemblage related to the Cenomanian–Turonian Boundary Event in Wunstorf and Söhlde dominated by Bulbobaculites problematicus; and (4) a Turonian assemblage in the Wunstorf and Söhlde sections with high numbers of Ammolagena contorta, Repmanina charoides, Bulbobaculites problematicus, Gerochammina stanislawi, and Spiroplectammina navarroana. The latest Albian–earliest Cenomanian assemblage consists of tubular, globular, and elongate foraminiferal morphogroups which are typical for the low- to mid-latitude slope biofacies. All other assemblages are composed of elongate foraminiferal morphogroups with additionally globular forms in the proximal settings of Baddeckenstedt and Söhlde or flattened planispiral and streptospiral forms in more distal settings of Wunstorf. For these assemblages, a new agglutinated foraminiferal biofacies named “mid-latitude shelf biofacies” is proposed herein. Changes in the relative abundance of different morphogroups can often be referred to single features of depositional sequences. Furthermore, classical macro-bioevents, which are often depositional-related, of the Lower Saxony Cretaceous seem to have a micro-bioevent or acme equivalent of the agglutinated foraminiferal fauna.


2021 ◽  
Author(s):  
◽  
Benjamin Cathie

<p>The Campbell Plateau represents ~30% of the submerged continent of Zealandia and represents part of the Gondwana super-continent that began to break-up ~98Ma. The focus of this MSc thesis is to use sub-bottom, profile data collected in 2017 and 2018 from Campbell Plateau to improve our understanding of the Cenozoic evolution of the region. The sub-bottom profiles show a rugged basement overlain by a variety of sedimentary sequences and subsurface features such as volcanoes, onlap, and downlap surfaces as well as multiple unconformities that can be traced throughout the Cenozoic (65Ma). The sub-bottom profiles are compared to 2 drill cores; Ocean Drilling Program (ODP) site 1120 on the eastern side of the plateau and Deep Sea Drilling Program (DSDP) site 277 in the south. These drill cores indicate that the lithology from the Cretaceous onwards is predominantly biogenic calcareous sandstone and mudstone, which changes to nannofossil-rich oozes in the Miocene and foraminiferal oozes and nannofossil oozes dated early to late Pleistocene. The northern plateau appears to be relatively quiescent with thin, relatively uniform strata, only influenced by small reverse faults. Sedimentary deposits such as wedges and contourites are also evident in the central and north-western part of the study area. The southern plateau appears to be have been highly dynamic with onlap/downlap surfaces, interpreted as current scours, and erosional surfaces. There is a plateau-wide unconformity during the Pliocene, as derived from the nannofossils of the ODP1120 drill core, which appears to have been a large-scale erosional event. The Southern Ocean circulation, dominated by Antarctic Circumpolar Current, the Subtropical Front, and local wind-driven currents, are the main drivers of these lithological changes and plateau-wide sedimentological structures.  Previous interpretations of the sub-surface structure of the plateau are seen to be invalid in relation to this study, with the sub-surface seen to be relatively undeformed with only minor reverse faulting present. Areas of possible uplifted basement seen near Campbell Island also indicate that the Campbell Plateau has been through substantial erosion and deformation since its’ separation from Gondwana ~98Ma and movement to its modern-day position.</p>


2021 ◽  
Author(s):  
◽  
Benjamin Cathie

<p>The Campbell Plateau represents ~30% of the submerged continent of Zealandia and represents part of the Gondwana super-continent that began to break-up ~98Ma. The focus of this MSc thesis is to use sub-bottom, profile data collected in 2017 and 2018 from Campbell Plateau to improve our understanding of the Cenozoic evolution of the region. The sub-bottom profiles show a rugged basement overlain by a variety of sedimentary sequences and subsurface features such as volcanoes, onlap, and downlap surfaces as well as multiple unconformities that can be traced throughout the Cenozoic (65Ma). The sub-bottom profiles are compared to 2 drill cores; Ocean Drilling Program (ODP) site 1120 on the eastern side of the plateau and Deep Sea Drilling Program (DSDP) site 277 in the south. These drill cores indicate that the lithology from the Cretaceous onwards is predominantly biogenic calcareous sandstone and mudstone, which changes to nannofossil-rich oozes in the Miocene and foraminiferal oozes and nannofossil oozes dated early to late Pleistocene. The northern plateau appears to be relatively quiescent with thin, relatively uniform strata, only influenced by small reverse faults. Sedimentary deposits such as wedges and contourites are also evident in the central and north-western part of the study area. The southern plateau appears to be have been highly dynamic with onlap/downlap surfaces, interpreted as current scours, and erosional surfaces. There is a plateau-wide unconformity during the Pliocene, as derived from the nannofossils of the ODP1120 drill core, which appears to have been a large-scale erosional event. The Southern Ocean circulation, dominated by Antarctic Circumpolar Current, the Subtropical Front, and local wind-driven currents, are the main drivers of these lithological changes and plateau-wide sedimentological structures.  Previous interpretations of the sub-surface structure of the plateau are seen to be invalid in relation to this study, with the sub-surface seen to be relatively undeformed with only minor reverse faulting present. Areas of possible uplifted basement seen near Campbell Island also indicate that the Campbell Plateau has been through substantial erosion and deformation since its’ separation from Gondwana ~98Ma and movement to its modern-day position.</p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Pauline Bergsten ◽  
Pauline Vannier ◽  
Alexandra María Klonowski ◽  
Stephen Knobloch ◽  
Magnús Tumi Gudmundsson ◽  
...  

The island of Surtsey was formed in 1963–1967 on the offshore Icelandic volcanic rift zone. It offers a unique opportunity to study the subsurface biosphere in newly formed oceanic crust and an associated hydrothermal-seawater system, whose maximum temperature is currently above 120°C at about 100m below surface. Here, we present new insights into the diversity, distribution, and abundance of microorganisms in the subsurface of the island, 50years after its creation. Samples, including basaltic tuff drill cores and associated fluids acquired at successive depths as well as surface fumes from fumaroles, were collected during expedition 5059 of the International Continental Scientific Drilling Program specifically designed to collect microbiological samples. Results of this microbial survey are investigated with 16S rRNA gene amplicon sequencing and scanning electron microscopy. To distinguish endemic microbial taxa of subsurface rocks from potential contaminants present in the drilling fluid, we use both methodological and computational strategies. Our 16S rRNA gene analysis results expose diverse and distinct microbial communities in the drill cores and the borehole fluid samples, which harbor thermophiles in high abundance. Whereas some taxonomic lineages detected across these habitats remain uncharacterized (e.g., Acetothermiia, Ammonifexales), our results highlight potential residents of the subsurface that could be identified at lower taxonomic rank such as Thermaerobacter, BRH-c8a (Desulfallas-Sporotomaculum), Thioalkalimicrobium, and Sulfurospirillum. Microscopy images reveal possible biotic structures attached to the basaltic substrate. Finally, microbial colonization of the newly formed basaltic crust and the metabolic potential are discussed on the basis of the data.


2021 ◽  
Vol 362 ◽  
pp. 106300
Author(s):  
Ewa Krzemińska ◽  
Åke E. Johansson ◽  
Leszek. Krzemiński ◽  
Janina Wiszniewska ◽  
Ian. S. Williams ◽  
...  

Author(s):  
Grace Juliana Gonçalves de Oliveira ◽  
Wolf Uwe Reimold ◽  
Álvaro Penteado Crósta ◽  
Natalia Hauser ◽  
Christian Koeberl ◽  
...  

ABSTRACT Early Archean spherule layers, widely accepted to represent distal ejecta deposits from large-scale impact events onto the early Earth, have been described from several stratigraphic levels of the Barberton greenstone belt in South Africa. Recently, exploration drilling at the Fairview Gold Mine (25°43′53″S, 31°5′59″E) in the northern domain of the belt resulted in the discovery of a new set of spherule layer intersections. The Fairview spherule layers in drill cores BH5901, BH5907, BH5911, and BH5949 were intersected just a few meters apart, at about the same stratigraphic position within the transition from the Onverwacht Group to the Fig Tree Group. The Fairview spherule layers have petrographic and chemical similarities to at least three other well-known Barberton spherule layers (S2–S4), and multiple spherule layer bed intersections in drill cores BARB5 and CT3, all from about the same stratigraphic position. They are not uniform in composition, in particular with respect to abundances of highly siderophile elements. The highest concentrations of moderately (Cr, Co, Ni) and highly siderophile (Ir) elements are within the range of concentrations for chondrites and, thus, reinforce the impact hypothesis for the generation of the Fairview spherule layers. Iridium peak concentrations and Cr/Ir interelement ratios for spherule layer samples from drill cores BH5907, BH5911, and BH5949 suggest admixtures of 50%–60% chondritic material, whereas for the BH5901 spherule layer, only an admixture of 1% chondritic material is indicated. We discuss whether these four Fairview spherule layers represent the same impact event, and whether they can be correlated to any of the S2–S4, CT3, and BARB5 intersections.


2021 ◽  
Author(s):  
François Turlin ◽  
et al.

Structural features investigated on the Cheechoo tonalite/granodiorite including the topological measures carried out on the outcrop and on drill cores, along with the gold grades and facies variability, and the structural measures of foliation and veins from the main stripped area.


2021 ◽  
Author(s):  
François Turlin ◽  
et al.

Structural features investigated on the Cheechoo tonalite/granodiorite including the topological measures carried out on the outcrop and on drill cores, along with the gold grades and facies variability, and the structural measures of foliation and veins from the main stripped area.


Sign in / Sign up

Export Citation Format

Share Document