SPINEL PERIDOTITE XENOLITHS FROM CRYSTAL KNOB AND THE STRUCTURE OF THE MANTLE LITHOSPHERE BENEATH COASTAL CALIFORNIA

2016 ◽  
Author(s):  
Daven P. Quinn ◽  
◽  
Jason B. Saleeby
2003 ◽  
Vol 196 (1-4) ◽  
pp. 131-145 ◽  
Author(s):  
Monica R. Handler ◽  
Richard J. Wysoczanski ◽  
John A. Gamble

1996 ◽  
Vol 57 (1-2) ◽  
pp. 23-50 ◽  
Author(s):  
O. Vasellil ◽  
H. Downes ◽  
M. F. Thirlwall ◽  
R. Vannucci ◽  
N. Coradossi

1997 ◽  
Vol 61 (405) ◽  
pp. 257-269 ◽  
Author(s):  
Suzanne Y. O'Reilly ◽  
D. Chen ◽  
W. L. Griffin ◽  
C. G. Ryan

AbstractThe proton microprobe has been used to determine contents of Ca, Ti, Ni, Mn and Zn in the olivine of 54 spinel lherzolite xenoliths from Australian and Chinese basalts. These data are compared with proton-probe data for Ni, Mn and Zn in the olivine of 180 garnet peridotite xenoliths from African and Siberian kimberlites. Fe, Mn, Ni and Zn contents are well-correlated; because the spinel lherzolite olivines have higher mean Fe contents than garnet peridotite olivines (average Fo89.6vs. Fo90–92) they also have lower Ni and higher Mn contents. Zn and Fe are well-correlated in garnet peridotite olivine, but in spinel peridotites this relationship is perturbed by partitioning of Zn into spinel. None of these elements shows significant correlation with temperature. Consistent differences in trace-element contents of olivines in the two suites is interpreted as reflecting the greater degree of depletion of Archean garnet peridotites as compared to Phanerozoic spinel lherzolites. Ca and Ti contents of spinel-peridotite olivine are well correlated with one another, and with temperature as determined by several types of geothermometer. However, Ca contents are poorly correlated with pressure as determined by the Ca-in-olivine barometer of Köhler and Brey (1990). This reflects the strong T-dependence of this barometer: the uncertainty in pressure (calculated by this method) which is produced by the ±50°C uncertainty expected of any geothermometer is ca ± 8 kbar, corresponding to the entire width of the spinel-lherzolite field at 900–1200°C.


1995 ◽  
Vol 123 (1-4) ◽  
pp. 53-65 ◽  
Author(s):  
J. Blusztajn ◽  
S.R. Hart ◽  
N. Shimizu ◽  
A.V. McGuire

2013 ◽  
Vol 50 (10) ◽  
pp. 1019-1032 ◽  
Author(s):  
A.M.R. Greenfield ◽  
E.D. Ghent ◽  
J.K. Russell

Spinel lherzolite xenoliths within alkali basalts exposed at Rayfield River and Big Timothy Mountain, south-central British Columbia, represent samples of the underlying lithospheric mantle. Electron microprobe analysis shows that most xenoliths comprise compositionally homogeneous grains of olivine, orthopyroxene, clinopyroxene, and spinel. We applied the following mineral-pair geothermometers to these rocks: orthopyroxene–clinopyroxene, spinel–orthopyroxene, and spinel–olivine. Temperatures calculated using the Brey and Köhler calibration of two-pyroxene thermometry were constrained in pressure by being required to lie on a model geotherm we develop for this region of B.C. The model geotherm is constrained to produce a temperature at the Moho (33 km) of 825 ± 25 °C to match the lowest temperature peridotite xenoliths recovered in this study. Although the overall effect of pressure on the temperature calculations is negligible (∼2 °C for 0.1 GPa), the simultaneous solution of the model geotherm and the pressure-dependent Brey–Köhler two-pyroxene thermometry removes the need for adopting an arbitrary pressure. We take these temperatures to represent peak mantle lithosphere temperatures. Fourteen Rayfield River xenoliths return two-pyroxene temperatures between 841 and 962 °C corresponding to depths of 34–42 km. Orthopyroxene–spinel and olivine–spinel results are 889 ± 60 and 825 ± 88 °C, respectively. Five Big Timothy xenoliths have two-pyroxene temperatures spanning 840–1058 °C and corresponding to depths of 34–48 km. Mean orthopyroxene–spinel and olivine–spinel temperatures are 844 ± 63 and 896 ± 232 °C, respectively. We argue that the differences in ranges of temperature do not represent closure temperatures imposed during cooling either in the mantle or during transport by the magma. Rather, these differences reflect differences in the original calibrations of the geothermometers or different degrees of equilibration in exchange reactions in dry rocks. Isochemical phase diagrams (pseudosections) constrain the pressure–temperature (P–T) field in which spinel is stable. These diagrams suggest that the spinel-bearing peridotites equilibrated at pressures ranging from ∼9.6 to 14 kbar (10 kbar = 1 GPa).


Sign in / Sign up

Export Citation Format

Share Document