A UNIQUE MULTIPROXY RECORD FROM THE SYDNEY BASIN, AUSTRALIA, CONSTRAINS THE AGE AND PATTERN OF THE CONTINENTAL END-PERMIAN MASS EXTINCTION AT HIGH SOUTHERN LATITUDES

2018 ◽  
Author(s):  
Christopher R. Fielding ◽  
◽  
Tracy D. Frank ◽  
Steve McLoughlin ◽  
Vivi Vajda ◽  
...  
2017 ◽  
Author(s):  
Katrin Heindel ◽  
◽  
William J. Foster ◽  
Sylvain Richoz ◽  
Daniel Birgel ◽  
...  

2017 ◽  
Author(s):  
Tim K. Lowenstein ◽  
◽  
Javier Garcia Veigas ◽  
Dioni I. Cendón ◽  
Lluís Gibert Beotas

2014 ◽  
Vol 26 (2) ◽  
pp. 675-683 ◽  
Author(s):  
Martin Schobben ◽  
Michael M. Joachimski ◽  
Dieter Korn ◽  
Lucyna Leda ◽  
Christoph Korte

2021 ◽  
Vol 574 ◽  
pp. 117172
Author(s):  
Daniel L. Johnson ◽  
Theodore M. Present ◽  
Menghan Li ◽  
Yanan Shen ◽  
Jess F. Adkins

Paleobiology ◽  
2011 ◽  
Vol 37 (3) ◽  
pp. 409-425 ◽  
Author(s):  
Jonathan L. Payne ◽  
Mindi Summers ◽  
Brianna L. Rego ◽  
Demir Altiner ◽  
Jiayong Wei ◽  
...  

Delayed biotic recovery from the end-Permian mass extinction has long been interpreted to result from environmental inhibition. Recently, evidence of more rapid recovery has begun to emerge, suggesting the role of environmental inhibition was previously overestimated. However, there have been few high-resolution taxonomic and ecological studies spanning the full Early and Middle Triassic recovery interval, leaving the precise pattern of recovery and underlying mechanisms poorly constrained. In this study, we document Early and Middle Triassic trends in taxonomic diversity, assemblage evenness, and size distribution of benthic foraminifers on an exceptionally exposed carbonate platform in south China. We observe gradual increases in all metrics through Early Triassic and earliest Middle Triassic time, with stable values reached early in the Anisian. There is little support in our data set for a substantial Early Triassic lag interval during the recovery of foraminifers or for a stepwise recovery pattern. The recovery pattern of foraminifers on the GBG corresponds well with available global data for this taxon and appears to parallel that of many benthic invertebrate clades. Early Triassic diversity increase in foraminifers was more gradual than in ammonoids and conodonts. However, foraminifers continued to increase in diversity, size, and evenness into Middle Triassic time, whereas diversity of ammonoids and conodonts declined. These contrasts suggest decoupling of recovery between benthic and pelagic environments; it is unclear whether these discrepancies reflect inherent contrasts in their evolutionary dynamics or the differential impact of Early Triassic ocean anoxia or associated environmental parameters on benthic ecosystems.


Paleobiology ◽  
2007 ◽  
Vol 33 (3) ◽  
pp. 397-413 ◽  
Author(s):  
Margaret L. Fraiser ◽  
David J. Bottjer

AbstractThe end-Permian mass extinction is commonly portrayed not only as a massive biodiversity crisis but also as the time when marine benthic faunas changed from the Paleozoic Fauna, dominated by rhynchonelliform brachiopod taxa, to the Modern Fauna, dominated by gastropod and bivalve taxa. After the end-Permian mass extinction, scenarios involving the Mesozoic Marine Revolution portray a steady increase in numerical dominance by these benthic molluscs as largely due to the evolutionary effects of an “arms race.” We report here a new global paleoecological database from study of shell beds that shows a dramatic geologically sudden earliest Triassic takeover by bivalves as numerical dominants in level-bottom benthic marine communities, which continued through the Early Triassic. Three bivalve genera were responsible for this switch, none of which has any particular morphological features to distinguish it from many typical Paleozoic bivalve genera. The numerical success of these Early Triassic bivalves cannot be attributed to any of the well-known morphological evolutionary innovations of post-Paleozoic bivalves that characterize the Mesozoic Marine Revolution. Rather, their ability to mount this takeover most likely was due to the large extinction of rhynchonelliform brachiopods during the end-Permian mass extinction and aided by their environmental distribution and physiological characteristics that enabled them to thrive during periods of oceanic and atmospheric stress during the Permian/Triassic transition.


Sign in / Sign up

Export Citation Format

Share Document