environmental distribution
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 88)

H-INDEX

43
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Victor Reyes-Umana ◽  
Jessica Kretschmer ◽  
John D. Coates

Recent reports of dissimilatory iodate-reducing microorganisms (DIRM) have arisen from studies of bacteria in marine environments. These studies described the physiology and distribution of DIRM while also demonstrating their presence in iodine-rich marine environments. We posited that despite lower iodine concentrations, terrestrial and freshwater ecosystems should also harbor DIRM. We established numerous enrichments from coastal and freshwater environments that actively remove amended iodate. We describe the physiology and genome of a new DIRM isolate, Aromatoleum toluclasticum sp. TC-10, emerging from a freshwater creek microcosm. Like other DIRM, A. toluclasticum sp. TC-10 couples acetate oxidation to iodate reduction with a concomitant increase in the OD600. Our results indicate that A. toluclasticum sp. TC-10 performs dissimilatory iodate reduction (DIR) using the recently described iodate reductase (Idr). We provide further evidence of horizontal gene transfer of the idr genes by demonstrating the lack of Idr in the closely related (99.93% 16S rDNA sequence identity) A. toluclasticum sp. MF63 and describe the heterogeneity of the accessory proteins associated with the iodate reduction island (IRI). These observations provide additional evidence that DIR is a horizontally acquired metabolism with broad environmental distribution beyond exclusively marine environments.


2022 ◽  
Vol 10 (1) ◽  
pp. 151
Author(s):  
Izabela Mujakić ◽  
Kasia Piwosz ◽  
Michal Koblížek

Bacteria are an important part of every ecosystem that they inhabit on Earth. Environmental microbiologists usually focus on a few dominant bacterial groups, neglecting less abundant ones, which collectively make up most of the microbial diversity. One of such less-studied phyla is Gemmatimonadota. Currently, the phylum contains only six cultured species. However, data from culture-independent studies indicate that members of Gemmatimonadota are common in diverse habitats. They are abundant in soils, where they seem to be frequently associated with plants and the rhizosphere. Moreover, Gemmatimonadota were found in aquatic environments, such as freshwaters, wastewater treatment plants, biofilms, and sediments. An important discovery was the identification of purple bacterial reaction centers and anoxygenic photosynthesis in this phylum, genes for which were likely acquired via horizontal gene transfer. So far, the capacity for anoxygenic photosynthesis has been described for two cultured species: Gemmatimonas phototrophica and Gemmatimonas groenlandica. Moreover, analyses of metagenome-assembled genomes indicate that it is also common in uncultured lineages of Gemmatimonadota. This review summarizes the current knowledge about this understudied bacterial phylum with an emphasis on its environmental distribution.


2022 ◽  
pp. 35-64
Author(s):  
Vishal Arvindlal Mevada ◽  
Urvisha Himmatbhai Beladiya ◽  
Himani Rajendrakumar Gandhi ◽  
Amitsinh Vijaysinh Mangrola ◽  
Rajesh Kanjibhai Patel

Alkalophiles are a class of extremophiles capable of survival in alkaline (pH roughly 8.5–11) environments, growing optimally around a pH of 10. At such high pH, the normal cellular functions are detrimentally affected for mesophilic organisms. The alkalophiles successfully manage stability of DNA, plasma membrane, and function of cytosolic enzymes, as well as other unfavorable physiological changes at such an elevated pH. A recent development in NextGen sequencing technology facilitates identifying uncultivable organisms amongst the extreme environments. In recent years, distribution of alkalophiles was reported from Soda Lake, marine environments, saline deserts, and natural thermal vents to natural water bodies. Although alkalophiles were first reported in 1889, their enzymatic and industrial applications still make them an interesting area of research. This chapter provides basic information on environmental distribution, taxonomy, physiology, bioenergetics, and survival mechanism and enzymes produced by alkalophilic organisms.


2021 ◽  
Author(s):  
Robert W. Murdoch ◽  
Gao Chen ◽  
Fadime Kara Murdoch ◽  
E. Erin Mack ◽  
Manuel I. Villalobos Solis ◽  
...  

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 39
Author(s):  
Ana R. R. P. Almeida ◽  
Bruno D. A. Pinheiro ◽  
Ana I. M. C. Lobo Ferreira ◽  
Manuel J. S. Monte

The present work reports an experimental thermodynamic study of two nitrogen heterocyclic organic compounds, fenclorim and clopyralid, that have been used as herbicides. The sublimation vapor pressures of fenclorim (4,6-dichloro-2-phenylpyrimidine) and of clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) were measured, at different temperatures, using a Knudsen mass-loss effusion technique. The vapor pressures of both crystalline and liquid (including supercooled liquid) phases of fenclorim were also determined using a static method based on capacitance diaphragm manometers. The experimental results enabled accurate determination of the standard molar enthalpies, entropies and Gibbs energies of sublimation for both compounds and of vaporization for fenclorim, allowing a phase diagram representation of the (p,T) results, in the neighborhood of the triple point of this compound. The temperatures and molar enthalpies of fusion of the two compounds studied were determined using differential scanning calorimetry. The standard isobaric molar heat capacities of the two crystalline compounds were determined at 298.15 K, using drop calorimetry. The gas phase thermodynamic properties of the two compounds were estimated through ab initio calculations, at the G3(MP2)//B3LYP level, and their thermodynamic stability was evaluated in the gaseous and crystalline phases, considering the calculated values of the standard Gibbs energies of formation, at 298.15 K. All these data, together with other physical and chemical properties, will be useful to predict the mobility and environmental distribution of these two compounds.


2021 ◽  
Vol 9 (12) ◽  
pp. 2411
Author(s):  
George Michail ◽  
Lefkothea Karapetsi ◽  
Panagiotis Madesis ◽  
Angeliki Reizopoulou ◽  
Ioannis Vagelas

Much is known about microbes originally identified in caves, but little is known about the entrapment of microbes (bacteria) in stalactites and their possible environmental origins. This study presents data regarding the significant environmental distribution of prokaryotic bacterial taxa of a Greek stalactite core. We investigated the involvement of those bacteria communities in stalactites using a metataxonomic analysis approach of partial 16S rRNA genes. The metataxonomic analysis of stalactite core material revealed an exceptionally broad ecological spectrum of bacteria classified as members of Proteobacteria, Actinobacteria, Firmicutes, Verrucomicrobia, and other unclassified bacteria. We concluded that (i) the bacterial transport process is possible through water movement from the upper ground cave environment, forming cave speleothems such as stalactites, (ii) bacterial genera such as Polaromonas, Thioprofundum, and phylum Verrucomicrobia trapped inside the stalactite support the paleoecology, paleomicrobiology, and paleoclimate variations, (iii) the entrapment of certain bacteria taxa associated with water, soil, animals, and plants such as Micrococcales, Propionibacteriales, Acidimicrobiales, Pseudonocardiales, and α-, β-, and γ-Proteobacteria.


2021 ◽  
Author(s):  
Karim Benzerara ◽  
Elodie Duprat ◽  
Tristan Bitard-Feildel ◽  
Géraldine Caumes ◽  
Corinne Cassier-Chauvat ◽  
...  

Cyanobacteria have massively contributed to carbonate deposit formation over the geological history. They are traditionally thought to biomineralize CaCO3 extracellularly as an indirect byproduct of photosynthesis. However, the recent discovery of freshwater cyanobacteria forming intracellular amorphous calcium carbonates (iACC) challenges this view. Despite the geochemical interest of such a biomineralization process, its molecular mechanisms and evolutionary history remain elusive. Here, using comparative genomics, we identify a new gene (ccyA) and protein (calcyanin) family specifically associated with cyanobacterial iACC biomineralization. Calcyanin is composed of a conserved C-terminal domain, which likely adopts an original fold, and a variable N- terminal domain whose structure allows differentiating 4 major types among the 35 known calcyanin homologues. Calcyanin lacks detectable full-length homologs with known function. Yet, genetic and comparative genomic analyses suggest a possible involvement in Ca homeostasis, making this gene family a particularly interesting target for future functional studies. Whatever its function, this new gene family appears as a gene diagnostic of intracellular calcification in cyanobacteria. By searching for ccyA in publicly available genomes, we identified 13 additional cyanobacterial strains forming iACC. This significantly extends our knowledge about the phylogenetic and environmental distribution of cyanobacterial iACC biomineralization, especially with the detection of multicellular genera as well as a marine species. Phylogenetic analyses indicate that iACC biomineralization is ancient, with independent losses in various lineages and some HGT cases that resulted in the broad but patchy distribution of calcyanin across modern cyanobacteria. Overall, iACC biomineralization emerges as a new case of genetically controlled biomineralization in bacteria.


2021 ◽  
pp. 1-13
Author(s):  
Kathlyn M. Smith ◽  
Alexander K. Hastings ◽  
Ryan M. Bebej ◽  
Mark D. Uhen

Abstract A new specimen of Basilosaurus cetoides was discovered on the banks of the Flint River in Albany, Georgia, USA, in 2010. This fossil, which was the most complete specimen of the species from Georgia to date, consisted of five nearly complete and two partial post-thoracic vertebrae, tentatively identified as S4 through Ca6. During excavation, however, the site was looted and most of the specimen was lost to science. Nonetheless, we use this discovery as an opportunity to update the current state of knowledge on the stratigraphic, biogeographic, and environmental distribution of Basilosaurus in North America, as well as the position of the late Eocene shoreline in the southeastern United States. The results show that Basilosaurus was most abundant across the southeastern coastal plain during the early to middle Priabonian, coincident with the late Eocene maximum marine transgression. The decline in Basilosaurus localities is associated with the retreating shoreline of the terminal Eocene. The majority of Basilosaurus localities fall well south of the position of the late Eocene shoreline hypothesized in this study, suggesting the genus favored middle to outer neritic zones of the epicontinental sea. The comparatively low number of Priabonian specimens in the Atlantic Coastal Plain versus the Gulf Coastal Plain, then, suggests the presence of shallow zones in the Atlantic Coastal Plain that may have limited the distribution of Basilosaurus across the region. The hypothesized shoreline of this study ultimately differs from earlier reconstructions by extending the Mississippi embayment at the Bartonian/Priabonian boundary farther north than previously noted.


Sign in / Sign up

Export Citation Format

Share Document