FLEXIBLE, QUANTITATIVE, 3D CURVE FITTING FOR FOLDS: FROM POINT CLOUD TO NURBS

2018 ◽  
Author(s):  
Mattathias D. Needle ◽  
◽  
Juliet G. Crider
Keyword(s):  
Author(s):  
A. Safari ◽  
H. G. Lemu

In part I of this study an optimum NURBS curve fitting by two evolutionary optimization techniques was successfully designed. These methods were implemented to optimize the location of a set of NURBS control points for the measured point cloud of four segments of a gas turbine compressor airfoil shape. The purpose of the optimization was to demonstrate the good ability of evolutionary techniques, in particular Genetic Algorithms, in optimizing such curve fitting problems. The objective of part II is to examine two alternative solutions for NURBS curve fitting of the same airfoil point cloud with swarm intelligence optimization technique. Indeed, the same work has been done by applying two basically different optimization approaches that is Particle Swarm Optimization and Invasive Weed Optimization. Results allow seeing a number of advantages as well as some disadvantages in this optimum curve fitting approach in comparison to the previous techniques applied by authors.


2012 ◽  
Vol 197 ◽  
pp. 68-72
Author(s):  
Qun Zhang Tu ◽  
Jian Xun Zhao ◽  
Long Qin ◽  
Jvying Dai

The flow of reverse modeling based on section feature is analyzed, and three algorithms of B-spline curve fitting are studied. Then by adopting the three methods, the sectional curve fitting of the point cloud data is achieved for the stator vane of hydraulic torque converter. Through comparing the errors and curvature of the fitting curves, the effect of curve fitting is analyzed and valuable conclusions are obtained.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (3) ◽  
pp. 9-14
Author(s):  
RENMEI XU ◽  
CELESTE M. CALKINS

This work investigates the ink mileage of dry toners in electrophotography (EP). Four different substrates were printed on a dry-toner color production Xerox iGen3 EP press. The print layout contained patches with different cyan, magenta, yellow, and black tonal values from 10% to 100%. Toner amounts on cyan patches were measured using an analytical method. Printed patches and unprinted paper samples, as well as dry toners, were dissolved in concentrated nitric acid. The copper concentrations in the dissolved solutions were analyzed by a Zeeman graphite furnace atomic absorption spectrometer. Analytical results were calculated to determine the toner amounts on paper for different tonal values. Their corresponding reflection densities were also measured. All data were plotted with OriginPro® 8 software, and four mathematical models were used for curve fitting. It was found that the C-S model fitted the experimental data of the two uncoated papers better than the other three models. None of the four models fitted the experimental data of the two coated papers, while the linear model was found to fit the data well. Linear fitting was the best in the practical density region for the two coated papers. Ink mileage curves obtained from curve fitting were used to estimate how much ink was required to achieve a target density for each paper; hence, the ink mileage was calculated. The highest ink mileage was 3.39 times the lowest ink mileage. The rougher the paper surface, the higher the requirement for ink film weight, and the lower ink mileage. No correlation was found between ink mileage and paper porosity.


2016 ◽  
Vol 136 (8) ◽  
pp. 1078-1084
Author(s):  
Shoichi Takei ◽  
Shuichi Akizuki ◽  
Manabu Hashimoto

Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document