A Newton Algorithm for Complex Curve Fitting

Author(s):  
J. T. Spanos ◽  
D. L. Mingori
1959 ◽  
Vol AC-4 (1) ◽  
pp. 37-43 ◽  
Author(s):  
E. C. Levy
Keyword(s):  

1992 ◽  
Vol 73 (6) ◽  
pp. 1273-1278
Author(s):  
J. H. LILLY ◽  
P. B. ARONHIME ◽  
D. L. NELSON

2022 ◽  
pp. 107754632110576
Author(s):  
Victor T Noppeney ◽  
Thiago Boaventura ◽  
Klaus Medeiros ◽  
Paulo Varoto

Modal identification is a key step in modal analysis. It enables the researcher to extract modal parameters, such as natural frequency, amplitude, and damping from a given structure. There are a considerable number of techniques in the state of the art aiming to address this problem, where multi-mode approaches arise as an appealing choice due to their ability to deal with mode coupling. This tutorial paper focuses on the complex-curve fitting technique, originally conceived for an application distinct from modal analysis. It aims at guiding other researchers by providing a tutorial-like and in-depth analysis of this important method, associated with a nonlinear weighting procedure for improved precision. Additionally, this paper fills a gap on the original technique, which is limited to the ratio of two polynomials, by proposing an automatic parameter extraction technique. The original and improved methods are applied on both simulated and experimental data, highlighting the effectiveness of the proposed changes. The proposed procedure is also compared with the rational fraction polynomial method.


2020 ◽  
Vol 53 (2) ◽  
pp. 5362-5367
Author(s):  
Thijs van Keulen ◽  
Robert van der Weijst ◽  
Tom Oomen

TAPPI Journal ◽  
2013 ◽  
Vol 12 (3) ◽  
pp. 9-14
Author(s):  
RENMEI XU ◽  
CELESTE M. CALKINS

This work investigates the ink mileage of dry toners in electrophotography (EP). Four different substrates were printed on a dry-toner color production Xerox iGen3 EP press. The print layout contained patches with different cyan, magenta, yellow, and black tonal values from 10% to 100%. Toner amounts on cyan patches were measured using an analytical method. Printed patches and unprinted paper samples, as well as dry toners, were dissolved in concentrated nitric acid. The copper concentrations in the dissolved solutions were analyzed by a Zeeman graphite furnace atomic absorption spectrometer. Analytical results were calculated to determine the toner amounts on paper for different tonal values. Their corresponding reflection densities were also measured. All data were plotted with OriginPro® 8 software, and four mathematical models were used for curve fitting. It was found that the C-S model fitted the experimental data of the two uncoated papers better than the other three models. None of the four models fitted the experimental data of the two coated papers, while the linear model was found to fit the data well. Linear fitting was the best in the practical density region for the two coated papers. Ink mileage curves obtained from curve fitting were used to estimate how much ink was required to achieve a target density for each paper; hence, the ink mileage was calculated. The highest ink mileage was 3.39 times the lowest ink mileage. The rougher the paper surface, the higher the requirement for ink film weight, and the lower ink mileage. No correlation was found between ink mileage and paper porosity.


Sign in / Sign up

Export Citation Format

Share Document