Application of Neural Network Technologies for the Classification of Cloudiness by Texture Parameters of MODIS High-Resolution Images

2019 ◽  
Vol 55 (9) ◽  
pp. 1012-1021
Author(s):  
V. G. Astafurov ◽  
A. V. Skorokhodov
2020 ◽  
Vol 96 (3s) ◽  
pp. 585-588
Author(s):  
С.Е. Фролова ◽  
Е.С. Янакова

Предлагаются методы построения платформ прототипирования высокопроизводительных систем на кристалле для задач искусственного интеллекта. Изложены требования к платформам подобного класса и принципы изменения проекта СнК для имплементации в прототип. Рассматриваются методы отладки проектов на платформе прототипирования. Приведены результаты работ алгоритмов компьютерного зрения с использованием нейросетевых технологий на FPGA-прототипе семантических ядер ELcore. Methods have been proposed for building prototyping platforms for high-performance systems-on-chip for artificial intelligence tasks. The requirements for platforms of this class and the principles for changing the design of the SoC for implementation in the prototype have been described as well as methods of debugging projects on the prototyping platform. The results of the work of computer vision algorithms using neural network technologies on the FPGA prototype of the ELcore semantic cores have been presented.


2021 ◽  
Vol 1047 (1) ◽  
pp. 012099
Author(s):  
O E Filatova ◽  
Yu V Bashkatova ◽  
L S Shakirova ◽  
M A Filatov

2020 ◽  
Author(s):  
Yajun Liu ◽  
Yilin Guo ◽  
Ya Gao ◽  
Guiming Hu ◽  
Ju Ma ◽  
...  

Aims: The dysfunction of placenta development is correlated to the defects of pregnancy and fetal growth. The detailed molecular mechanism of placenta development is not identified in human due to the lack of material in vivo. Image-based reconstructions of GRN are still very underdeveloped. Methods and Results: In this study, immunohistochemistry images of different TFs in chorionic villus were obtained by a high-resolution scanner. Next, we used a convolutional neural network and machine learning method to infer gene interaction networks of human placenta from these images based on the transfer learning technique. The experimental results show that deep learning models reveals regulatory roles that have not yet been fully recognized. The spatial expression data reveal new regulatory relationships that traditional experiments have failed to recognize, and has allowed the development of gene regulation networks based on the spatial distribution of gene expression. Conclusions: We demonstrate the effectiveness of this approach in building networks using high-resolution images of the human placenta. Our analysis is of certain significance for further exploration of the development of the placenta and the occurrence of pregnancy-related diseases in the future. The datasets and analysis provide a useful source for the researchers in the field of the maternal-fetal interface and the establishment of pregnancy.


Sign in / Sign up

Export Citation Format

Share Document