Structural and Electronic Properties and Chemical Bonding in Layered 1111-Oxyarsenides LaRhAsO and LaIrAsO: AB Initio Simulation

2019 ◽  
Vol 60 (12) ◽  
pp. 1859-1867
Author(s):  
V. V. Bannikov ◽  
I. R. Shein
2017 ◽  
Vol 121 (45) ◽  
pp. 25333-25341 ◽  
Author(s):  
Agnes Mahmoud ◽  
Lorenzo Maschio ◽  
Mauro Francesco Sgroi ◽  
Daniele Pullini ◽  
Anna Maria Ferrari

1998 ◽  
Vol 538 ◽  
Author(s):  
J. F. Justo ◽  
F. De Brito Mota ◽  
A. Fazziom

AbstractWe combined empirical and ab initio methods to study structural and electronic properties of amorphous silicon nitride. For such study, we developed an interatomic potential to describe the interactions between silicon, nitrogen, and hydrogen atoms. Using this potential, we performed Monte Carlo simulations in a simulated annealing scheme to study structural properties of amorphous silicon nitride. Then this potential was used to generate relevant structures of a-SiNx:Hy which were input configurations to ab initio calculations. We investigated the electronic and structural role played by hydrogen incorporation in amorphous silicon nitride.


2013 ◽  
Vol 2 (1) ◽  
Author(s):  
A. Shamloo ◽  
A.P. Sowa

AbstractWe consider the electronic properties of a system consisting of two quantum dots in physical proximity, which we will refer to as the double-Qdot. Double-Qdots are attractive in light of their potential application to spin-based quantum computing and other electronic applications, e.g. as specialized sensors. Our main goal is to derive the essential properties of the double-Qdot from a model that is rigorous yet numerically tractable, and largely circumvents the complexities of an ab initio simulation. To this end we propose a novel Hamiltonian that captures the dynamics of a bi-partite quantum system, wherein the interaction is described via a Wiener-Hopf type operator. We subsequently describe the density of states function and derive the electronic properties of the underlying system. The analysis seems to capture a plethora of electronic profiles, and reveals the versatility of the proposed framework for double-Qdot channel modelling.


Sign in / Sign up

Export Citation Format

Share Document