ab initio simulation
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 46)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Maninder S. Grover ◽  
Paolo Valentini ◽  
Nicholas J. Bisek ◽  
Ashley M. Verhoff

Author(s):  
Yuta Hirokawa ◽  
Atsushi Yamada ◽  
Shunsuke Yamada ◽  
Masashi Noda ◽  
Mitsuharu Uemoto ◽  
...  

In the field of optical science, it is becoming increasingly important to observe and manipulate matter at the atomic scale using ultrashort pulsed light. For the first time, we have performed the ab initio simulation solving the Maxwell equation for light electromagnetic fields, the time-dependent Kohn-Sham equation for electrons, and the Newton equation for ions in extended systems. In the simulation, the most time-consuming parts were stencil and nonlocal pseudopotential operations on the electron orbitals as well as fast Fourier transforms for the electron density. Code optimization was thoroughly performed on the Fujitsu A64FX processor to achieve the highest performance. A simulation of amorphous SiO2 thin film composed of more than 10,000 atoms was performed using 27,648 nodes of the Fugaku supercomputer. The simulation achieved excellent time-to-solution with the performance close to the maximum possible value in view of the memory bandwidth bound, as well as excellent weak scalability.


Doklady BGUIR ◽  
2022 ◽  
Vol 19 (8) ◽  
pp. 5-9
Author(s):  
V. V. Murav’ev ◽  
V. M. Mishchenka

Ab-initio simulation of hydrogenated graphene properties was performed. At present, graphene is considered one of the most promising materials for the formation of new semiconductor devices with good characteristics. Graphene has been the subject of many recent investigations due to its peculiar transport, mechanical and others properties [1]. The chemical modification of graphene named as graphane has recently entered the investigation as a possible candidate to solve problems connected with the lack of a graphene bandgap. Graphane is a compound material consisting of two-dimensional graphene bonded by some atoms of hydrogen. The investigation shows that graphane has the three valley Г-М-K band structure with the Г valley, which has the smallest energy gap between the conductivity zone and the valence zone. The calculation of relative electron masses and non-parabolic coefficients in Г, М and K valleys was performed. Based on the obtained characteristics, it is possible to implement a statistical multi-particle Monte Carlo method to determine the characteristics of electron transfer in heterostructure semiconductor devices. A research on modified graphene structures is important for fundamental science and technological applications in high-speed transistor structures operating in the microwave and very high frequency ranges.


2021 ◽  
Author(s):  
Honghui Shang ◽  
Fang Li ◽  
Yunquan Zhang ◽  
Ying Liu ◽  
Libo Zhang ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1146
Author(s):  
Victor Yavna ◽  
Tatiana Nazdracheva ◽  
Andrey Morozov ◽  
Yakov Ermolov ◽  
Andrei Kochur

The hydration of the basal surfaces of kaolinite is studied by theoretical methods. The cluster method was used to simulate the positions of atoms. The positions of the atoms of the basal surfaces of dry and hydrated minerals are optimized by minimizing the total energy in the Hartree–Fock approximation. The adsorption energies of water molecules were calculated taking into account the fourth-order correlation corrections of Møller–Plesset perturbation theory. The formation of the IR spectrum of kaolinite in the range of wave numbers 2500–4500 cm−1 is studied. The experimentally observed effect of the change in relative intensity and position of the band with a change in the moisture content of the sample is interpreted.


Sign in / Sign up

Export Citation Format

Share Document