Electronic structure of UO2.12 calculated in the coherent potential approximation taking into account strong electron correlations and spin-orbit coupling

2016 ◽  
Vol 117 (7) ◽  
pp. 655-664 ◽  
Author(s):  
M. A. Korotin ◽  
Z. V. Pchelkina ◽  
N. A. Skorikov ◽  
A. V. Efremov ◽  
V. I. Anisimov
1993 ◽  
Vol 313 ◽  
Author(s):  
W. H. Butler ◽  
James M. MacLaren ◽  
X.-G. Zhang

ABSTRACTThe Layer Korringa Kohn Rostoker-Coherent Potential Approximation technique was used to calculate the low temperature Giant Magnetoresistance from first principles for Co|Cu and permalloy|Cu superlattices. Our calculations predict large giant Magnetoresis-tance ratios for Co|Cu and extremely large ratios for permalloy|Cu for current perpendicular to the layers. Mechanisms such as spin-orbit coupling which mix spin channels are expected to greatly reduce the GMR effect for permalloy|Cu.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
D. Maryenko ◽  
M. Kawamura ◽  
A. Ernst ◽  
V. K. Dugaev ◽  
E. Ya. Sherman ◽  
...  

AbstractSpin–orbit coupling (SOC) is pivotal for various fundamental spin-dependent phenomena in solids and their technological applications. In semiconductors, these phenomena have been so far studied in relatively weak electron–electron interaction regimes, where the single electron picture holds. However, SOC can profoundly compete against Coulomb interaction, which could lead to the emergence of unconventional electronic phases. Since SOC depends on the electric field in the crystal including contributions of itinerant electrons, electron–electron interactions can modify this coupling. Here we demonstrate the emergence of the SOC effect in a high-mobility two-dimensional electron system in a simple band structure MgZnO/ZnO semiconductor. This electron system also features strong electron–electron interaction effects. By changing the carrier density with Mg-content, we tune the SOC strength and achieve its interplay with electron–electron interaction. These systems pave a way to emergent spintronic phenomena in strong electron correlation regimes and to the formation of quasiparticles with the electron spin strongly coupled to the density.


2021 ◽  
Vol 103 (17) ◽  
Author(s):  
Vladislav Borisov ◽  
Yaroslav O. Kvashnin ◽  
Nikolaos Ntallis ◽  
Danny Thonig ◽  
Patrik Thunström ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
I. N. Yakovkin

The electronic structure of Au(111) films is studied by means of relativistic DFT calculations. It is found that the twinning of the surface bands, observed in photoemission experiment, does not necessarily correspond to the spin-splitting of the surface states caused by the break of the inversion symmetry at the surface. The twinning of the bands of clean Au(111) films can be obtained within nonrelativistic or scalar-relativistic approximation, so that it is not a result of spin-orbit coupling. However, the spin-orbit coupling does not lead to the spin-splitting of the surface bands. This result is explained by Kramers’ degeneracy, which means that the existence of a surface itself does not destroy the inversion symmetry of the system. The inversion symmetry of the Au(111) film can be broken, for example, by means of adsorption, and a hydrogen monolayer deposited on one face of the film indeed leads to the appearance of the spin-splitting of the bands.


2007 ◽  
Vol 49 (6) ◽  
pp. 1116-1120 ◽  
Author(s):  
S. G. Ovchinnikov ◽  
B. A. Gizhevskiĭ ◽  
Yu. P. Sukhorukov ◽  
A. E. Ermakov ◽  
M. A. Uĭmin ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Wei Wu ◽  
Kai Liu ◽  
Yanjie Li ◽  
Zhenhai Yu ◽  
Desheng Wu ◽  
...  

Abstract Exploration of superconductivity in Cr-based compounds has attracted considerable interest because only a few Cr-based superconductors (CrAs, A2Cr3As3 and ACr3As3 (A = K, Rb, Cs, Na)) have been discovered so far and they show an unconventional pairing mechanism. We report the discovery of bulk superconductivity at 5.25 K in chromium nitride in Pr3Cr10-xN11 with a cubic lattice structure. A relatively large upper critical field of Hc2(0) ∼ 12.6 T is determined, which is larger than the estimated Pauli-paramagnetic pair-breaking magnetic field. The material has a large electronic specific-heat coefficient of 170 mJ K−2 mol−1—about 10 times larger than that estimated by the electronic structure calculation, which suggests that correlations between 3d electrons are very strong in Pr3Cr10-xN11, and thus quantum fluctuations might be involved. Electronic structure calculations show that the density of states at the Fermi energy are contributed predominantly by Cr 3d electrons, implying that the superconductivity results mainly from the condensation of Cr 3d electrons. Pr3Cr10-xN11 represents a rare example of possible unconventional superconductivity emerging in a 3D system with strong electron correlations. Nevertheless, clarification of the specific pairing symmetry needs more investigation.


Sign in / Sign up

Export Citation Format

Share Document