zeeman effect
Recently Published Documents


TOTAL DOCUMENTS

1529
(FIVE YEARS 101)

H-INDEX

57
(FIVE YEARS 6)

2022 ◽  
Vol 71 (1) ◽  
pp. 016301-016301
Author(s):  
Hong Lan ◽  
◽  
Ge Jun ◽  
Shuang Shan ◽  
Liu Da-Quan

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 487
Author(s):  
Vladimir N. Kondratyev

Nucleosynthesis at latge magnetic induction levels relevant to core-collapse supernovae and neutron star mergers is considered. For respective magnetic fields of a strength up to ten teratesla, atomic nuclei exhibit a linear magnetic response due to the Zeeman effect. Such nuclear reactivity can be described in terms of magnetic susceptibility. Susceptibility maxima correspond to half-filled shells. The neutron component rises linearly with increasing shell angular momentum, while the contribution of protons grows quadratically due to considerable income from orbital magnetization. For a case j = l + 1/2, the proton contribution makes tens of nuclear magnetons and significantly exceeds the neutron values which give several units. In a case j = l − 1/2, the proton component is almost zero up to the g shell. A noticeable increase in the generation of corresponding explosive nucleosynthetic products with antimagic numbers is predicted for nuclei at charge freezing conditions. In the iron group region, new seeds are also created for the r-process. In particular, the magnetic enhancement of the volume of 44Ti isotopes is consistent with results from observations and indicates the substantial increase in the abundance of the main titanium isotope (48Ti) in the Galaxy’s chemical composition. Magnetic effects are proven to result in a shift of the r-process path towards smaller mass numbers, as well as an increase in the volume of low-mass nuclides in peaks of the r-process nuclei.


2021 ◽  
Author(s):  
Witali Krochin ◽  
Francisco Navas-Guzmán ◽  
David Kuhl ◽  
Axel Murk ◽  
Gunter Stober

Abstract. Continuous temperature observations at the stratosphere and lower mesosphere are rare. Radiometry opens the possibility by observing microwave emissions from two oxygen lines to retrieve temperature profiles at all altitudes. In this study, we present observations performed with a temperature radiometer (TEMPERA) at the Meteoswiss station at Payerne for the period from 2014 to 2017. We reanalyzed these observations with a recently developed and improved retrieval algorithm accounting for the Zeeman line splitting in the line center of both oxygen emission lines at 52.5424 and 53.0669 GHz. The new temperature retrievals were validated against MERRA2 reanalysis and the meteorological analysis NAVGEM-HA. The comparison confirmed that the new algorithm yields an increased measurement response up to an altitude of 53–55 km, which extends the altitude coverage by 8–10 km compared to previous retrievals without considering the Zeeman effect. Furthermore, we found correlation coefficients comparing the TEMPERA temperatures with MERRA2 and NAVGEM-HA for monthly mean profiles to be in the range of 0.8–0.96. In addition, mean temperature biases of 1 K and −2 K were found between TEMPERA and both models (MERRA2 and NAVGEM-HA), respectively. We also identified systematic altitude-dependent cold and warm biases compared to both model data sets.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
B. Real ◽  
N. Carlon Zambon ◽  
P. St-Jean ◽  
I. Sagnes ◽  
A. Lemaître ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Abolfazl Soltani

Pluto, Ceres and all planets of solar system except Neptune, with a high approximation, follow a rule called Titius-Bode rule or Bode rule, which can by no means be considered as a stochastic event. This rule shows that the distance of the planets from the sun in Solar system is regulated. Here, we prove that the existence of a standing and cosine wave packet in solar system, with the wavelength λ = 0.6 AU (AU represents the distance of earth from the sun) and the phase constant ∅_0=π/6, is the reason for Bode rule. Moreover, we prove that this huge wave packet belongs to the sun. In the following of the article, based on the solar system wave function, we will enter into the atomic field and arrive to a new atomic model that helps us to describe many phenomena such as the normal Zeeman effect.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hangyong Shan ◽  
Lukas Lackner ◽  
Bo Han ◽  
Evgeny Sedov ◽  
Christoph Rupprecht ◽  
...  

AbstractThe emergence of spatial and temporal coherence of light emitted from solid-state systems is a fundamental phenomenon intrinsically aligned with the control of light-matter coupling. It is canonical for laser oscillation, emerges in the superradiance of collective emitters, and has been investigated in bosonic condensates of thermalized light, as well as exciton-polaritons. Our room temperature experiments show the strong light-matter coupling between microcavity photons and excitons in atomically thin WSe2. We evidence the density-dependent expansion of spatial and temporal coherence of the emitted light from the spatially confined system ground-state, which is accompanied by a threshold-like response of the emitted light intensity. Additionally, valley-physics is manifested in the presence of an external magnetic field, which allows us to manipulate K and K’ polaritons via the valley-Zeeman-effect. Our findings validate the potential of atomically thin crystals as versatile components of coherent light-sources, and in valleytronic applications at room temperature.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012063
Author(s):  
O. V. Kibis ◽  
M. V. Boev ◽  
V. M. Kovalev

Abstract The Floquet theory for electrons in carbon nanotubes (CNTs) irradiated by a circularly polarized electromagnetic wave propagating along the CNT axis is developed. It is demonstrated, particularly, that the irradiation opens the gap between the conduction and valence bands of CNTs of metal type and lifts the degeneracy of electron states with mutually opposite angular momenta along the CNT axis. As a consequence, the optically-induced metal-insulator transition and the optical Zeeman effect appear in the CNTs. It follows from the theory that these light-induced phenomena can be observed in the modern experiments.


2021 ◽  
Author(s):  
Abolfazl Soltani

Pluto, Ceres and all planets of solar system except Neptune, with a high approximation, follow a rule called Titius-Bode rule or Bode rule, which can by no means be considered as a stochastic event. This rule shows that the distance of the planets from the sun in Solar system is regulated. Here, we prove that the existence of a standing and cosine wave packet in solar system, with the wavelength λ = 0.6 AU (AU represents the distance of earth from the sun) and the phase constant ∅_0=π/6, is the reason for Bode rule. Moreover, we prove that this huge wave packet belongs to the sun. In the following of the article, based on the solar system wave function, we will enter into the atomic field and arrive to a new atomic model that helps us to describe many phenomena such as the normal Zeeman effect.


Sign in / Sign up

Export Citation Format

Share Document