Strong Dissipative Hydrodynamical Systems and the Operator Pencil of S. Krein

2021 ◽  
Vol 42 (5) ◽  
pp. 1094-1112
Author(s):  
V. I. Voytitsky
Keyword(s):  
Author(s):  
Mikhail D. Malykh

A waveguide with a constant, simply connected section S is considered under the condition that the substance filling the waveguide is characterized by permittivity and permeability that vary smoothly over the section S, but are constant along the waveguide axis. Ideal conductivity conditions are assumed on the walls of the waveguide. On the basis of the previously found representation of the electromagnetic field in such a waveguide using 4 scalar functions, namely, two electric and two magnetic potentials, Maxwells equations are rewritten with respect to the potentials and longitudinal components of the field. It appears possible to exclude potentials from this system and arrive at a pair of integro-differential equations for longitudinal components alone that split into two uncoupled wave equations in the optically homogeneous case. In an optically inhomogeneous case, this approach reduces the problem of finding the normal modes of a waveguide to studying the spectrum of a quadratic self-adjoint operator pencil.


2014 ◽  
Author(s):  
Abdizhahan Sarsenbi ◽  
Makhmud Sadybekov

Author(s):  
Sergey A. Nazarov ◽  
Juha H. Videman

This article is concerned with the existence of rigid freely floating structures capable of supporting trapped modes (time-harmonic water waves of finite energy in an unbounded domain). Under the usual assumptions of linear water-wave theory, a condition guaranteeing the existence of trapped modes is derived, and structures satisfying this geometric condition are shown to exist in a three-dimensional water channel. The sufficient condition arises from the application of variational principles to a conveniently formulated linear spectral problem, the main effort being the construction of a reduction scheme that turns the quadnic operator pencil associated with the original coupled system into a linear self-adjoint spectral problem. An example of floating bodies supporting at least four trapped modes is given.


2019 ◽  
Vol 40 (4) ◽  
pp. 2256-2308
Author(s):  
Sabine Bögli ◽  
Marco Marletta

Abstract We introduce concepts of essential numerical range for the linear operator pencil $\lambda \mapsto A-\lambda B$. In contrast to the operator essential numerical range, the pencil essential numerical ranges are, in general, neither convex nor even connected. The new concepts allow us to describe the set of spectral pollution when approximating the operator pencil by projection and truncation methods. Moreover, by transforming the operator eigenvalue problem $Tx=\lambda x$ into the pencil problem $BTx=\lambda Bx$ for suitable choices of $B$, we can obtain nonconvex spectral enclosures for $T$ and, in the study of truncation and projection methods, confine spectral pollution to smaller sets than with hitherto known concepts. We apply the results to various block operator matrices. In particular, Theorem 4.12 presents substantial improvements over previously known results for Dirac operators while Theorem 4.5 excludes spectral pollution for a class of nonselfadjoint Schrödinger operators which has not been possible to treat with existing methods.


Sign in / Sign up

Export Citation Format

Share Document