Analytical Approach to Solving Fractional Partial Differential Equation by Optimal q-Homotopy Analysis Method

2018 ◽  
Vol 11 (2) ◽  
pp. 134-145 ◽  
Author(s):  
R. Darzi ◽  
B. Agheli
2011 ◽  
Vol 66 (5) ◽  
pp. 259-271 ◽  
Author(s):  
Mehdi Dehghan ◽  
Rezvan Salehi

In this research work a time-dependent partial differential equation which has several important applications in science and engineering is investigated and a method is proposed to find its solution. In the current paper, the homotopy analysis method (HAM) is developed to solve the eikonal equation. The homotopy analysis method is one of the most effective methods to obtain series solution. HAM contains the auxiliary parameter h, which provides us with a simple way to adjust and control the convergence region of a series solution. Furthermore, this method does not require any discretization, linearization or small perturbation and therefore reduces the numerical computation a lot. Some test problems are given to demonstrate the validity and applicability of the presented technique.


2010 ◽  
Vol 65 (11) ◽  
pp. 935-949 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian ◽  
Abbas Saadatmandi

In this paper, the homotopy analysis method is applied to solve linear fractional problems. Based on this method, a scheme is developed to obtain approximation solution of fractional wave, Burgers, Korteweg-de Vries (KdV), KdV-Burgers, and Klein-Gordon equations with initial conditions, which are introduced by replacing some integer-order time derivatives by fractional derivatives. The fractional derivatives are described in the Caputo sense. So the homotopy analysis method for partial differential equations of integer order is directly extended to derive explicit and numerical solutions of the fractional partial differential equations. The solutions are calculated in the form of convergent series with easily computable components. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the new technique.


Sign in / Sign up

Export Citation Format

Share Document