Genetic Polymorphism of Siberian Stone Pine (Pinus sibirica Du Tour) in Kuznetsk Alatau

2020 ◽  
Vol 13 (6) ◽  
pp. 569-576
Author(s):  
N. V. Oreshkova ◽  
T. S. Sedel’nikova ◽  
S. P. Efremov ◽  
A. V. Pimenov
2011 ◽  
Vol 4 (1) ◽  
pp. 3-22 ◽  
Author(s):  
Nikolaeva Svetlana A. ◽  
◽  
Velisevich Svetlana N. ◽  
Savchuk Dmitry A. ◽  
◽  
...  

Author(s):  
Е. А. Petrova ◽  
Yu. S. Belokon

The article presents the results of analysis of the variability of 23 allozyme loci in 10 populations of Siberian Stone pine. Populations from South Siberia mountain regions had higher percentage of polymorphic loci in averageand mean number of alleles per loci (P99% = 44,57 %, NA = 1,543 ± 0,014) compared to Ural populations (P99%=29,57%,NA = 1,348 ± 0,015). The average values of the observed and expected heterozygosity in the populations of the Altai-Sayan (HO = 0,087 ±0,007 and HE = 0,090 ± 0,004) and the Ural mountain region (HO = 0,083 ± 0,008 и HE = 0,082 ± 0,005)were close. About 8.4% of the total genetic diversity is due to differences between the studied populations. The results ofmultidimensional data analysis confirm the existence of the Altai-Sayan and Ural refugia in the post-glacial period andthe dispersal of Siberian stone pine to the North from the Ural glacier refugium.


2021 ◽  
Vol 28 ◽  
pp. 30-35
Author(s):  
N. V. Oreshkova ◽  
t. S. Sedelnikova ◽  
S. P. Efremov ◽  
A. V. Pimenov

Aim. Study of DNA polymorphism of 7 coenopopulations of Siberian stone pine (Pinus sibirica) growing in theKuznetsk Alatau. Methods. Nuclear microsatellite loci developed for P. sibirica were used as genetic markers. Results. 44 allelic variants were identified from 11 nuclear microsatellite loci, which significantly differ in the composition and frequency of occurrence of the studied P. sibirica coenopopulations. The highest level of allelic diversity is found in loci Ps_80612 and Ps_1502048, where 8 and 7 alleles were identified, respectively. The calculation of the main parameters of genetic diversity showed a relatively low level of polymorphism in the studied samples (NA = 3.078; NE = 1.877; HE = 0.445; HO = 0.401). The assessment of the degree of genetic differences between populations using the Nei genetic distance (DN) showed that, despite the low genetic differentiation (DN varies from 0.019 to 0.061), the differences between them can be traced quite clearly. Conclusions. Differences in the level of genetic polymorphism of P. sibirica is defined by the presence of orographic and phytocoenotic barriers between coenopopulations, as well as a high degree of ecological and anthropogenic extremity of individual growth sites. Keywords: Pinus sibirica, Kuznetsk Alatau, microsatellites, genetic diversity, heterozygosity.


Sign in / Sign up

Export Citation Format

Share Document