Electron Affinities of BN, NO and NF: Coupled Cluster and Multireference Configuration Interaction Calculations

2005 ◽  
Vol 70 (7) ◽  
pp. 923-940 ◽  
Author(s):  
Jiří Fišer ◽  
Rudolf Polák

The accurate adiabatic electron affinities (EA) of the BN, NO and NF molecules have been determined using the coupled cluster approach and multireference configuration interaction methods. By combining large doubly augmented correlation-consistent basis sets (through the sextuple zeta) and complete basis set extrapolations with corrections for core-valence correlation and relativistic effects, we find that the RCCSD(T) method gives EA(BN) = 3.153 eV in very close agreement with experiment and predicts EA(NF) = 0.247 eV. The RCCSD(T) and UCCSD(T) EA(NO) results, 0.008 and 0.031 eV, bracket the experimental value. For both the neutral and anionic ground state species the usual spectroscopic constants were derived.

2019 ◽  
Vol 25 (10) ◽  
Author(s):  
Teobald Kupka ◽  
Aneta Buczek ◽  
Małgorzata A. Broda ◽  
Adrianna Mnich ◽  
Tapas Kar

Abstract Detailed study of Jensen’s polarization-consistent vs. Dunning’s correlation-consistent basis set families performance on the extrapolation of raw and counterpoise-corrected interaction energies of water dimer using coupled cluster with single, double, and perturbative correction for connected triple excitations (CCSD(T)) in the complete basis set (CBS) limit are reported. Both 3-parameter exponential and 2-parameter inverse-power fits vs. the cardinal number of basis set, as well as the number of basis functions were analyzed and compared with one of the most extensive CCSD(T) results reported recently. The obtained results for both Jensen- and Dunning-type basis sets underestimate raw interaction energy by less than 0.136 kcal/mol with respect to the reference value of − 4.98065 kcal/mol. The use of counterpoise correction further improves (closer to the reference value) interaction energy. Asymptotic convergence of 3-parameter fitted interaction energy with respect to both cardinal number of basis set and the number of basis functions are closer to the reference value at the CBS limit than other fitting approaches considered here. Separate fits of Hartree-Fock and correlation interaction energy with 3-parameter formula additionally improved the results, and the smallest CBS deviation from the reference value is about 0.001 kcal/mol (underestimated) for CCSD(T)/aug-cc-pVXZ calculations. However, Jensen’s basis set underestimates such value to 0.012 kcal/mol. No improvement was observed for using the number of basis functions instead of cardinal number for fitting.


2003 ◽  
Vol 68 (2) ◽  
pp. 387-404 ◽  
Author(s):  
Ioannis S. K. Kerkines ◽  
Aristides Mavridis

The ground states of the transition-metal diatomic carbide cations, MC+ (M = Sc, Ti, V, and Cr), are studied using multireference configuration interaction (MRCI) methods in conjunction with quantitative basis sets. Full potential energy curves are calculated for all four systems. When 3s23p6 core/valence correlation contributions and scalar relativistic effects are taken into account, our best estimates for the zero-point-corrected dissociation energies of the MC+ series are in good agreement with relevant experimental results. For TiC+, the recent correlation-consistent-type basis sets for Ti of Bauschlicher are also exploited to extract complete basis set limits of selected properties. The ground states of VC+(X 3∆) and CrC+(X 2∆) are reported for the first time in the literature. For CrC+ an interesting competition is revealed between the 2∆ and 4Σ- states; although 4Σ- is formally the ground state at the MRCI level of theory, when core/valence and/or relativistic effects are included, the ground state of CrC+ becomes of 2∆ symmetry, with a calculated energy separation (a 4Σ- ← X 2∆) of 2.3 kcal/mol.


2003 ◽  
Vol 68 (1) ◽  
pp. 75-88 ◽  
Author(s):  
Ivan Černušák ◽  
Alena Zavažanová ◽  
Juraj Raab ◽  
Pavel Neogrády

Geometries, electron affinities (EA) and singlet-triplet (S-T) splittings of XH2/XH2- molecules (X = B, Al, Ga) are calculated by coupled-cluster methods, using the sequence of basis sets. The EA values and S-T splittings for aluminium and gallium dihydrides are an order of magnitude larger (in absolute values) than those for boron. For boron and aluminium dihydrides, two types of extrapolations towards complete basis set limit are applied, leading to EA = 0.24 eV, ST = -0.01 eV (BH2), and EA = 1.10 eV, ST = -0.62 eV. The best calculated values for gallium dihydrides are EA = 1.13 eV and ST = -0.74 eV. All three S-T splittings favour singlet as the ground state, although the S-T splittings of BH2- is exceptionally small. In addition, vertical electron affinities and vertical electron detachments are reported for these molecules.


2021 ◽  
Author(s):  
Weixiu Pang ◽  
Xiaomin Song ◽  
Yunbin Sun ◽  
Meishan Wang

Abstract The potential astronomical interest dithioformic acid (trans-HC(=S)SH) exists five isomers and has received considerable attention of astronomical observation in recent years. The different positions of H atoms of five isomers lead to diverse point groups, dipole moments, and spectroscopic constants. The anharmonic force field and spectroscopic constants of them are calculated using CCSD(T) and B3LYP employing correlation consistent basis sets. Molecular structures, dipole moments, rotational constants, and fundamental frequencies of trans-HC(=S)SH are compared with the available experimental data. The B3LYP/Gen=5 and CCSD(T)/Gen=Q results can reproduce them well. Molecular structures, dipole moments, relative energies, spectroscopic constants of cis-HC(=S)SH and dithiohydroxy carbene (DTHC) are also calculated. The new data obtained in this study are expected to guide the future high resolution experimental work and to assist astronomical search for CH2S2.


Sign in / Sign up

Export Citation Format

Share Document